15.化簡$\sqrt{(x-5)^{2}+{y}^{2}}$-$\sqrt{(x+5)^{2}+{y}^{2}}$=6為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$(x≤-3).

分析 把已知等式移向平方,整理后再移向平方,化簡得答案.

解答 解:由$\sqrt{(x-5)^{2}+{y}^{2}}$-$\sqrt{(x+5)^{2}+{y}^{2}}$=6,得:
$\sqrt{(x-5)^{2}+{y}^{2}}$=$\sqrt{(x+5)^{2}+{y}^{2}}$+6,兩邊平方得:
${x}^{2}-10x+25+{y}^{2}={x}^{2}+10x+25+{y}^{2}+12\sqrt{(x+5)^{2}+{y}^{2}}+36$,
即$3\sqrt{(x+5)^{2}+{y}^{2}}=-5x-9$,兩邊再平方得:
$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$,由題意可知,其中x≤-3.
故答案為:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$(x≤-3).

點評 本題考查根式與分數(shù)指數(shù)冪的互化及其化簡運算,考查了計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.定義在R上的函數(shù)f(x)滿足f(x+1)=-$\frac{1}{f(x)}$,當x∈[3,5]時,f(x)=2-|x-4|,則下列不等式一定成立的是( 。
A.f(-$\frac{1}{2}$)>f($\frac{\sqrt{3}}{2}$)B.f($\frac{1}{3}$)<f(-$\frac{1}{2}$)C.f($\frac{1}{2}$)<f($\frac{\sqrt{3}}{2}$)D.f(-$\frac{1}{4}$)<f(-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,若a1=$\frac{6}{7}$,試求a2015+a2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)滿足f(x+$\frac{1}{2}$)+f(-x+$\frac{1}{2}$)=2,化簡:Sn=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≥0時,f(x)=2x-2x${\;}^{\frac{1}{2}}$,又a是函數(shù)g(x)=ln(x+1)-$\frac{2}{x}$的零點,則f(-2),f(a),f(1.5)的大小關系是f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=loga(x+1)(a>0且a≠1)的定義域為(-1,0),值域為(0,+∞).
(1)求a的取值范圍;
(2)求g(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(x>0)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,在多面體ABCDEF中,面ABCD是平行四邊形,EF∥AB,EF:AB=1:2,則四棱錐E-ABCD與三棱錐E-BCF的體積比為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知z是復數(shù),且滿足2z+|z|-2i=0,則z=$-\frac{{\sqrt{3}}}{3}+i$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓C:x2+y2-2x+4y-4=0,O為坐標原點.A,B是圓上兩點.
(1)直線AB的斜率為1,且滿足OA⊥OB,求滿足條件的直線l的方程;
(2)若OA⊥OB,求AB中點P的軌跡方程.

查看答案和解析>>

同步練習冊答案