【題目】已知函數(shù)f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,π]時,f(x)的值域是[5,8],求a,b的值.
【答案】
(1)解:解:f(x)=a(1+cosx+sinx)+b= asin(x+ )+a+b
當a=﹣1時,由2kπ+ ≤x+ ≤2kπ+ π,得2kπ+ ≤x≤2kπ+ π,
∴f(x)的單調(diào)增區(qū)間為[2kπ+ ,2kπ+ π](k∈Z)
(2)解:∵0≤x≤π,∴ ≤x+ ≤ π,
∴﹣ ≤sin(x+ )≤1,依題意知a≠0,
分兩種情況考慮:
1°當a>0時, ,
∴a=3( ﹣1),b=5;
2°當a<0時, ,
∴a=﹣3( ﹣1),b=8,
綜上所述:a=3 ﹣3,b=5或a=3﹣3 ,b=8
【解析】函數(shù)f(x)解析式利用二倍角的余弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),(1)將a=﹣1代入,利用正弦函數(shù)的遞增區(qū)間即可確定出f(x)的遞增區(qū)間;(2)根據(jù)x的范圍求出這個角的范圍,確定出正弦函數(shù)的值域,根據(jù)f(x)的值域,分a小于0與大于0兩種情況考慮,分別列出關(guān)于a與b的方程組,求出方程組的解即可得到a與b的值
【考點精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:,以及對二倍角的余弦公式的理解,了解二倍角的余弦公式:.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中, 平面是的中點, 是上的點且為邊上的高.
(1)證明: 平面;
(2)若,求三棱錐的體積;
(3)在線段上是否存在這樣一點,使得平面?若存在,說出點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)O為坐標原點,點P的坐標(x﹣2,x﹣y)
(1)在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用計算機隨機在[0,3]上先后取兩個數(shù)分別記為x,y,求P點在第一象限的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對應(yīng)的邊為a,b,c
(1)若 ,求A的值;
(2)若 ,且△ABC的面積 ,求sinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)g(x)=asinxcosx(a>0)的最大值為 ,則函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸方程為( )
A.x=0
B.x=﹣
C.x=﹣
D.x=﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=3sin(2x+ )的圖象,只要把函數(shù)y=3sinx的圖象上所有的點( )
A.橫坐標縮短到原來的 倍(縱坐標不變),再把所得圖象所有的點向左平移 個單位長度
B.橫坐標伸長到原來的2倍(縱坐標不變),再把所得圖象所有的點向左平移 個單位長度
C.向右平移 個單位長度,再把所得圖象所有的點橫坐標縮短到原來的 倍(縱坐標不變)
D.向左平移 個單位長度,再把所得圖象所有的點橫坐標伸長到原來的2倍(縱坐標不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com