為貫徹“激情工作,快樂數(shù)學(xué)”的理念,某學(xué)校在學(xué)習(xí)之余舉行趣味知識(shí)有獎(jiǎng)競賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰,已知選手甲答題的正確率為
2
3

(1)求選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù)ξ,試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)選手甲答3道題進(jìn)入決賽的概率為(
2
3
)3=
8
27
,選手甲答4道題進(jìn)入決賽的概率為 
C
2
3
(
2
3
)2
1
3
2
3
=
8
27
,由此能求出選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率.
(2)依題意,ξ的可能取值為3,4,5.分別求出相應(yīng)的概率,由此能求出ξ的分布列和ξ的數(shù)學(xué)期望.
解答: 解:(1)選手甲答3道題進(jìn)入決賽的概率為(
2
3
)3=
8
27
,
選手甲答4道題進(jìn)入決賽的概率為 
C
2
3
(
2
3
)2
1
3
2
3
=
8
27

∴選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率P=
8
27
+
8
27
=
16
27
.(4分)
(2)依題意,ξ的可能取值為3,4,5.
則有P(ξ=3)=(
2
3
)3+(
1
3
)3=
1
3
,
P(ξ=4)=
C
2
3
(
2
3
)2
1
3
2
3
+
C
2
3
(
1
3
)2
2
3
1
3
=
10
27

P(ξ=5)=
C
2
4
(
2
3
)2•(
1
3
)2
2
3
+
C
2
4
(
1
3
)2•(
2
3
)2
1
3
=
8
27
,
ξ345
P
1
3
10
27
8
27
∴Eξ=3×
1
3
+4×
10
27
+5×
8
27
=
107
27
.(8分)
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇0,2],則
f(2x)
x
的定義域?yàn)椋ā 。?/div>
A、{x|0<x≤4}
B、{x|0≤x≤4}
C、{x|0<x≤1}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)f(x)=(a-b)x 
a
3
+b-3是冪函數(shù),求b 2log32-a -
1
2
的值.
(2)計(jì)算:tan
π
4
-cos4
π
2
+2sin3π-sin2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線y=x+1上的一點(diǎn)向圓(x-3)2+y2=1引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:
高桿矮桿合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再從這6株玉米中隨機(jī)選出2株,求這2株之中既有高桿玉米又有矮桿玉米的概率;
(2)根據(jù)對(duì)玉米生長情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過0.050的前提下認(rèn)為玉米的圓粒與玉米的高桿有關(guān)?(下面的臨界值表和公式可供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},
(1)若m=3,求A∩B;
(2)若B是A的子集,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x-2)2+y2=1,Q是直線y=x上的動(dòng)點(diǎn),QA、QB與圓M相切,切點(diǎn)分別為點(diǎn)A、B.
(1)若點(diǎn)Q的坐標(biāo)為(0,0),求切線QA、QB的方程;
(2)若點(diǎn)Q的坐標(biāo)為(t,t),t∈R,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知
x
=2
b
-3
a
,
y
=2
a
+
b
,|
a
|=|
b
|=1,
a
b
的夾角為60°,求
x
y
的夾角.
(2)已知
a
=(3,4),
AB
a
平行,且|
AB
|=10,點(diǎn)A的坐標(biāo)為(-1,3),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=log
1
2
1-ax
x-1
為奇函數(shù),則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案