5.(1+2x2)(x-$\frac{1}{x}$)8的展開式中常數(shù)項(xiàng)為( 。
A.42B.-42C.24D.-24

分析 寫出(x-$\frac{1}{x}$)8的通項(xiàng),求出其展開式中的常數(shù)項(xiàng)和含x-2的項(xiàng),分別與1、2x2相乘后作和得答案.

解答 解:(x-$\frac{1}{x}$)8的通項(xiàng)${T}_{r+1}={C}_{8}^{r}{x}^{8-r}(-\frac{1}{x})^{r}=(-1)^{r}{C}_{8}^{r}{x}^{8-2r}$.
由8-2r=0,得r=4,即(x-$\frac{1}{x}$)8的常數(shù)項(xiàng)為${C}_{8}^{4}$;
由8-2r=-2,得r=5,即(x-$\frac{1}{x}$)8的含x-2的項(xiàng)為$-{C}_{8}^{5}{x}^{-2}$.
∴(1+2x2)(x-$\frac{1}{x}$)8的展開式中常數(shù)項(xiàng)為$1×{C}_{8}^{4}-2×{C}_{8}^{5}=-42$.
故選:B.

點(diǎn)評 本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.△ABC的外接圓圓心為O,半徑為2,$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$為零向量,且|${\overrightarrow{OA}}$|=|${\overrightarrow{AB}}$|.則$\overrightarrow{CA}$在$\overrightarrow{BC}$方向上的投影為(  )
A.-3B.$-\sqrt{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{alnx}{x+1}$+$\frac{x}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+2y-3=0,則a+b=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=cos(ωx+$\frac{π}{4}}$)(ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象(  )
A.向左平移$\frac{π}{4}$個(gè)單位長度B.向右平移$\frac{π}{4}$個(gè)單位長度
C.向左平移$\frac{π}{8}$個(gè)單位長度D.向右平移$\frac{π}{8}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知tanα=-$\sqrt{5}$,且α是第四象限角,求sinα和cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,矩形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,-1),B(π,-1),C(π,1),D(0,1),正弦曲線f(x)=sinx和余弦曲線g(x)=cosx在矩形ABCD內(nèi)交于點(diǎn)F,則圖中陰影部分的面積為( 。
A.$\sqrt{2}$+1B.$\sqrt{2}$-1C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow{a}$=(k,1)與$\overrightarrow$=(-4,4)垂直,則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的方程是Ax+By+C=0.
(1)當(dāng)B≠0時(shí),直線l的斜率是多少?當(dāng)B=0時(shí)呢?
(2)系數(shù)A,B,C取什么值時(shí),方程Ax+By+C=0表示通過原點(diǎn)的直線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在數(shù)列{an}中,a1=2,an+1=an+lg(1+$\frac{1}{n}$),那么an=2+lgn.

查看答案和解析>>

同步練習(xí)冊答案