1.直角梯形ABCD滿足AB∥CD,AD=CD=$\frac{1}{2}$AB=1,AD⊥AB,點(diǎn)M是梯形邊上的任意一點(diǎn).則AM≥$\sqrt{2}$的概率是( 。
A.$\frac{4+\sqrt{2}}{7}$B.$\frac{4-\sqrt{2}}{7}$C.$\frac{4+\sqrt{2}}{8}$D.$\frac{4-\sqrt{2}}{8}$

分析 根據(jù)幾何概型的概率公式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵AD=CD=$\frac{1}{2}$AB=1,
∴AC=$\sqrt{2}$,AB=2,
若AM≥$\sqrt{2}$,則M位于線段CB,和BF上,
則BC+BF=$\sqrt{2}$+2-$\sqrt{2}$=2,
梯形的周長l=1+1+2+$\sqrt{2}$=4+$\sqrt{2}$,
則對應(yīng)的概率P=$\frac{2}{4+\sqrt{2}}=\frac{2(4-\sqrt{2})}{(4+\sqrt{2})(4-\sqrt{2})}$=$\frac{2(4-\sqrt{2})}{14}$=$\frac{4-\sqrt{2}}{7}$,
故選:B.

點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,根據(jù)條件轉(zhuǎn)化為長度之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)的部分圖象如圖所示,向圖中的矩形區(qū)域隨機(jī)投出100粒豆子,記下落入陰影區(qū)域的豆子數(shù).通過10次這樣的試驗(yàn),算得落入陰影區(qū)域的豆子的平均數(shù)約為39,由此可估計(jì)$\int\begin{array}{l}1\\ 0\end{array}f(x)dx$的值約為( 。
A.$\frac{61}{100}$B.$\frac{39}{100}$C.$\frac{10}{100}$D.$\frac{117}{100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.兩位女生和兩位男生站成一排照相,則兩位男生不相鄰的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某校高二年級(jí)共有1600名學(xué)生,其中男生960名,640名,該校組織了一次滿分為100分的數(shù)學(xué)學(xué)業(yè)水平模擬考試,根據(jù)研究,在正式的學(xué)業(yè)水平考試中,本次成績在[80,100]的學(xué)生可取得A等(優(yōu)秀),在[60,80)的學(xué)生可取得B等(良好),在[40,60)的學(xué)生可取得C等(合格),在不到40分的學(xué)生只能取得D等(不合格),為研究這次考試成績優(yōu)秀是否與性別有關(guān),現(xiàn)按性別采用分層抽樣的方法抽取100名學(xué)生,將他們的成績按從低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七組加以統(tǒng)計(jì),繪制成頻率分布直方圖,如圖是該頻率分布直方圖.
(Ⅰ)估計(jì)該校高二年級(jí)學(xué)生在正式的數(shù)學(xué)學(xué)業(yè)水平考試中,成績不合格的人數(shù);
(Ⅱ) 請你根據(jù)已知條件將下列2×2列聯(lián)表補(bǔ)充完整,并判斷是否有90%的把握認(rèn)為“該校高二年級(jí)學(xué)生在本次考試中數(shù)學(xué)成績優(yōu)秀與性別有關(guān)”?
數(shù)學(xué)成績優(yōu)秀數(shù)學(xué)成績不優(yōu)秀合計(jì)
男生a=12b=
女生c=d=34
合計(jì)n=100
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
P(k2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足x2+y2≤1,則x+y-xy的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,Sn=-2n2+16n,則該數(shù)列前多少項(xiàng)的和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.正三棱錐P-ABC中,底面邊長等于1,側(cè)棱PA=$\sqrt{2}$,D,E分別為AB,PC中點(diǎn),求:
(1)異面直線PD與BE所成角的余弦值;
(2)BE與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax3+bx2+cx+d有a>0,b2-3ac<0,證明:函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知項(xiàng)數(shù)為2n+1的等差數(shù)列{an}滿足a1+a2n+1≠0,所有奇數(shù)項(xiàng)的和為S,所有偶數(shù)項(xiàng)的和為S,則$\frac{{S}_{奇}}{{S}_{偶}}$的值為$\frac{n+1}{n}$.

查看答案和解析>>

同步練習(xí)冊答案