11.已知a,b都是實(shí)數(shù),那么“a3>b3”是“a2>b2”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)不等式的關(guān)系,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:因?yàn)閍3>b3等價(jià)于a>b,由于a,b正負(fù)不定,所以由a>b不能得到a2>b2;
由a2>b2也不能得到a>b,因此“a3>b3”是“a2>b2”的既不充分也不必要條件.
故選:D.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線ln:y=x-$\sqrt{2n}$與圓Cn:x2+y2=2an+n交于不同的兩點(diǎn)An,Bn,n∈N*.?dāng)?shù)列{an}滿足:a1=1,an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)若bn=$\frac{n}{{4{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)記數(shù)列{an}的前n項(xiàng)和為Sn,在(Ⅱ)的條件下,求證:對(duì)任意正整數(shù)n,$\sum_{k=1}^{n}$$\frac{k+2}{{S}_{k}({T}_{k}+k+1)}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(sin($\frac{π}{3}$-ωx),sinωx),$\overrightarrow$=(sin($\frac{π}{3}$+ωx),$\sqrt{3}$cosωx),x∈R,函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,若f(x)的最小正周期為π
(Ⅰ)求ω的值;
(Ⅱ)若f(α+$\frac{π}{6}$)=$\frac{21}{20}$,求sinα;
(Ⅲ)若對(duì)于任意x∈[0,$\frac{π}{2}$],m≤f(x)≤n恒成立,求n-m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集R上,則函數(shù)y=f(a-x)與y=f(x-a)的圖象( 。
A.關(guān)于直線y=0對(duì)稱B.關(guān)于直線x=0對(duì)稱C.關(guān)于直線y=a對(duì)稱D.關(guān)于直線x=a對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-{e^x},x≤1}\\{x+\frac{3}{x}-5,x>1}\end{array}}$,則f(x)的最小值為-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S6>S7>S5,則an>0的最大n=6,滿足SkSk+1<0的正整數(shù)k=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=3ax2-2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b=$\frac{1}{2}$,f(x)=|x-$\frac{1}{2}$|在x∈[0,1]有兩個(gè)不同的解,求實(shí)數(shù)a的范圍.
(II)當(dāng)|f(0)|≤2,|f(1)|≤2時(shí),求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$=(3,1),$\overrightarrow b$=(1,3),$\overrightarrow c$=(k,-2),若(${\overrightarrow a$-$\overrightarrow c}$)∥$\overrightarrow b$,則向量$\overrightarrow a$與向量$\overrightarrow c$的夾角的余弦值是(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{1}{5}$C.$-\frac{{\sqrt{5}}}{5}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)[x]表示不超過x的最大整數(shù),對(duì)任意實(shí)數(shù)x,下面式子正確的是(  )
A.[x]=|x|B.[x]≥$\sqrt{x^2}$C.[x]>-xD.[x]>x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案