14.$\root{3}{(lg5-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=( 。
A.lg$\frac{2}{5}$B.1C.-1D.lg$\frac{5}{2}$

分析 判斷l(xiāng)g2-1的符號化簡.

解答 解:$\root{3}{(lg5-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=lg5-1-(1-lg2)=lg5+lg2-2=1-2=-1.
故選:C.

點評 本題考查了對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,某人在山腳P處測得甲山山頂A的仰角為30°,乙山山頂B的仰角為45°,∠APB的大小為45°,山腳P到山頂A的直線距離為2km,在A處測得山頂B的仰角為30°,則乙山的高度為2km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=lnx-6+2x的零點為x0,x0∈( 。
A.(1,2)B.(2,3)C.(3,4)D.(5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在拋物線y2=2px(p>0)中有如下結(jié)論:過焦點F的動直線l交拋物線y2=2px(p>0)于A、B兩點,則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{2}{p}$為定值,請把此結(jié)論類比到橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中有:過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點F的直線交橢圓于A,B則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{2a}{b^2}$為定值;當(dāng)橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1時,$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線y=x2,求過點P(2,1)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出下列命題:
(1)小于$\frac{π}{2}$的角是銳角  
(2)第二象限角是鈍角
(3)終邊相同的角相等  
(4)若α與β有相同的終邊,則必有α-β=2kπ(k∈Z),正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(4,2),$\overrightarrow c$=m$\overrightarrow a$+$\overrightarrow b$(m∈R),且$\overrightarrow c$與$\overrightarrow a$的夾角等于$\overrightarrow c$與$\overrightarrow b$的夾角,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某廣告公司設(shè)計一塊周長為8米的矩形廣告牌,廣告設(shè)計費(fèi)為每平方米1000元,設(shè)矩形一邊長為x米,面積為S平方米.
(1)求S與x的函數(shù)關(guān)系式及x的取值范圍;
(2)為使廣告設(shè)計費(fèi)最多,廣告牌的長和寬分別為多少米?求此時廣告設(shè)計費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點.
(1)求證:AF⊥面EDP;
(2)設(shè)異面直線EM與AF所成的角為θ,求cosθ的最大值.

查看答案和解析>>

同步練習(xí)冊答案