13.已知異面直線a與b所成的角為θ;向量$\overrightarrow{m}$和$\overrightarrow{n}$所在直線分別平行于a和b,則恒有( 。
A.cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$B.cos(π-θ)=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$C.|cosθ|=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$D.cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$

分析 利用向量的夾角公式計(jì)算即可,明確異面直線的所成的角與直線的方向向量夾角的關(guān)系.

解答 解:異面直線a與b所成的角為θ;向量$\overrightarrow{m}$和$\overrightarrow{n}$所在直線分別平行于a和b,則向量$\overrightarrow{m}$和$\overrightarrow{n}$的夾角為θ或π-θ,
所以cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$;
故選:D.

點(diǎn)評(píng) 本題考查了空間角的異面直線所成的角;理解向量的夾角公式及異面直線的夾角范圍是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在a>0,b>0的情況下,下面三個(gè)結(jié)論:
①$\frac{2ab}{a+b}≤\frac{a+b}{2}$; 
②$\sqrt{ab}≤\frac{a+b}{2}$;  
③$\frac{a+b}{2}≤\sqrt{\frac{{{a^2}+{b^2}}}{2}}$; 
④$\frac{b^2}{a}+\frac{a^2}≥a+b$.
其中正確的是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若logab•log5a=3,則b=125.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知在△ABC中,設(shè)點(diǎn)O是△ABC的外心.求證:$\overrightarrow{AO}•\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{A{B}^{2}}$,$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{A{C}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=ex,g(x)=ax+b,若對(duì)于任意的x都有f(x)≥g(x),則ab的最大值為( 。
A.eB.$\frac{e}{3}$C.$\frac{e}{2}$D.$\frac{\sqrt{2}e}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x+1)的定義域是[-2,3],求f(x2)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)總體的60個(gè)個(gè)體編號(hào)為00,01,…,59,現(xiàn)需從中抽取一容量為6的樣本,請(qǐng)從隨機(jī)數(shù)表的倒數(shù)第5行(如表,且表中下一行接在上一行右邊)第10列開(kāi)始,向右讀取,直到取足樣本,則抽取樣本的號(hào)碼是01,47,20,28,17,02
95 33 95 22 00 18 74 72 00 18 38 79
58 69 32 81 76 80 26 92 82 80 84 25 39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=xln(e2x+1)-x2+1,f(a)=2,則f(-a)的值為( 。
A.1B.0C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案