16.(x-1)(x2-$\frac{1}{x}$)6的展開式中常數(shù)項為-15.

分析 (x2-$\frac{1}{x}$)6的展開式的通項公式:Tr+1=${∁}_{6}^{r}$$({x}^{2})^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x12-3r.分別令12-3r=-1,0,進而得出答案.

解答 解:(x2-$\frac{1}{x}$)6的展開式的通項公式:Tr+1=${∁}_{6}^{r}$$({x}^{2})^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x12-3r
分別令12-3r=-1,解得r∈∅.
12-3r=0,解得r=4.
∴(x-1)(x2-$\frac{1}{x}$)6的展開式中常數(shù)項=-1×${∁}_{6}^{4}$=-15.
故答案為:-15.

點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(sinx,sin2x+1),$\overrightarrow$=(2sinx,1),函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$(x∈R).
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sin(α-$\frac{π}{6}$)=-$\frac{4}{5}$,則cos(α+$\frac{π}{3}$)=$\frac{4}{5}$;cos(2α-$\frac{π}{3}$)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)$\frac{a-i}{3+4i}$的實部是$\frac{2}{5}$,則實數(shù)a=(  )
A.2B.$\frac{14}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為($\frac{π}{4}$,0).將函數(shù)f(x)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移$\frac{π}{2}$個單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式;
(2)定義:當(dāng)函數(shù)取得最值時,函數(shù)圖象上對應(yīng)的點稱為函數(shù)的最值點,如果函數(shù)y=F(x)=$\sqrt{3}sin\frac{πx}{k}$的圖象上至少有一個最大值點和一個最小值點在圓x2+y2=k2(k>0)的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sinxcosx+$\sqrt{3}{cos^2}$x
(1)若0≤x≤$\frac{π}{2}$,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.實數(shù)$\frac{a+i}{2-i}$(a為實數(shù))的共軛復(fù)數(shù)為( 。
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)直線x=t與兩數(shù)f(x)=x2+1,g(x)=x+lnx的圖象分別交于P,Q兩點,則|PQ|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在x上的截距為-3,且和直線2x+y一1=0平行的直線方程為2x+y+6=0.

查看答案和解析>>

同步練習(xí)冊答案