【題目】某保險公司開設(shè)的某險種的基本保費為萬元,今年參加該保險的人來年繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的下一年度的保費與其與本年度的出險次數(shù)的關(guān)聯(lián)如下:
本年度出險次數(shù) | ||||||
下一次保費(單位:萬元) |
設(shè)今年初次參保該險種的某人準(zhǔn)備來年繼續(xù)參保該險種,且該參保人一年內(nèi)出險次數(shù)的概率分布列如下:
一年內(nèi)出險次數(shù) | ||||||
概率 |
()求此續(xù)保人來年的保費高于基本保費的概率.
()若現(xiàn)如此續(xù)保人來年的保費高于基本保費,求其保費比基本保費高出的概率.
()求該續(xù)保人來年的平均保費與基本保費的比值.
【答案】().().().
【解析】分析:(1)由互斥事件的概率公式可得此續(xù)保人來年的保費高于基本保費的概率為;(2)根據(jù)條件概率公式可得保費比基本保費高出的概率為;()利用離散型隨機(jī)變量的去期望公式可得平均保費,從而可得結(jié)果.
詳解:()設(shè)出險次數(shù)為事件,一續(xù)保人本年度的保費為事件,
則續(xù)保人本年度保費高于基本保費為事件,
則,
.
()設(shè)保費比基本保費高出為事件,
.
()平均保費
,
∴平均保費與基本保費比值為.
詳解:本題主要考查互斥事件、條件概率的應(yīng)用以及離散型隨機(jī)變量的期望公式,屬于中檔題.解答這類綜合性的概率問題一定要把事件的獨立性、互斥性結(jié)合起來,要會對一個復(fù)雜的隨機(jī)事件進(jìn)行分析,也就是說能把一個復(fù)雜的事件分成若干個互斥事件的和,再把其中的每個事件拆成若干個相互獨立的事件的積,這種把復(fù)雜事件轉(zhuǎn)化為簡單事件,綜合事件轉(zhuǎn)化為單一事件的思想方法在概率計算中特別重要.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若函數(shù)的圖象與軸的交點個數(shù)不少于2個,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值并判斷函數(shù)的單調(diào)性;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無限接近圓的面積,進(jìn)而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:
方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;
方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.
(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;
(2)從該銷售公司隨機(jī)選取一名推銷員,對他(或她)過去兩年的銷售情況進(jìn)行統(tǒng)計,得到如下統(tǒng)計表:
月銷售產(chǎn)品件數(shù) | 300 | 400 | 500 | 600 | 700 |
次數(shù) | 2 | 4 | 9 | 5 | 4 |
把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】O為坐標(biāo)原點,直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點,求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設(shè)直線l交橢圓 =1于P、Q兩點,M為PQ的中點,求|OM|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩奶粉廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩奶粉廠生產(chǎn)的產(chǎn)品中分別抽取16件和5件,測量產(chǎn)品中微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
170 | 178 | 166 | 176 | 180 | |
74 | 80 | 77 | 76 | 81 |
(1)已知甲廠生產(chǎn)的產(chǎn)品共有96件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素滿足且時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱中,底面是等腰梯形, ,,是線段的中點,平面.
(1)求證:平面;
(2)若,求平面和平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某技術(shù)公司新開發(fā)了A,B兩種新產(chǎn)品,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
產(chǎn)品A | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品B | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計產(chǎn)品A,產(chǎn)品B為正品的概率;
(2)生產(chǎn)一件產(chǎn)品A,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,次品則虧損20元;在(1)的前提下.記X為生產(chǎn)一件產(chǎn)品A和一件產(chǎn)品B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com