(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.

(1)求橢圓的標準方程;

(2)若均不重合,設直線的斜率分別為,求的值。

 

【答案】

(1)(2)

【解析】

試題分析:(1)由題意可得圓的方程為直線與圓相切,

所以橢圓方程為 

(2)設

的值為

考點:橢圓的標準方程的求法;橢圓的簡單性質(zhì);圓的簡單性質(zhì);點到直線的距離公式;斜率公式;

點評:熟記橢圓中的關系式,并靈活應用。注意橢圓中的關系式與雙曲線中的關系式的不同。此題屬于基礎題型。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題14分)已知圓,過點作圓的切線為切點.

(1)求所在直線的方程;

(2)求切線長;

(3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年北京市高三第四次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題14分)

已知等比數(shù)列滿足,且,的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市高新區(qū)高三2月月考理科數(shù)學試卷(解析版 題型:解答題

(本小題14分)已知函數(shù),設。

(Ⅰ)求F(x)的單調(diào)區(qū)間;

(Ⅱ)若以圖象上任意一點為切點的切線的斜率 恒成立,求實數(shù)的最小值。

(Ⅲ)是否存在實數(shù),使得函數(shù)的圖象與的圖象恰好有四個不同的交點?若存在,求出的取值范圍,若不存在,說名理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省高三上學期月考理科數(shù)學 題型:解答題

(本小題14分)已知函數(shù)的圖像與函數(shù)的圖像關于點

 

對稱

(1)求函數(shù)的解析式;

(2)若,在區(qū)間上的值不小于6,求實數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三2月月考數(shù)學理卷 題型:解答題

(本小題14分)

已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:

,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)上的“k階收縮函數(shù)”

(1)若,試寫出,的表達式;

(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,

如果是,求出對應的k,如果不是,請說明理由;

已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍

 

查看答案和解析>>

同步練習冊答案