分析 求得橢圓的a,b,c,由橢圓的定義可得△ABF2的周長為|AB|+|AF2|+|BF2|=4a,計算即可得到所求值.
解答 解:橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的a=2,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}-^{2}}$=2,
由橢圓的定義可得|AF1|+|AF2|=|BF1|+|BF2|=2a=4,
即有△ABF2的周長為|AB|+|AF2|+|BF2|
=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.
故答案為:8.
點評 本題考查三角形的周長的求法,注意運用橢圓的定義和方程,定義法解題是關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤1} | B. | {x|-1≤x<0} | C. | {x|x<-1} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\sqrt{2}$-1,+∞) | B. | [$\sqrt{2}$+1,+∞) | C. | [3-2$\sqrt{2}$,+∞) | D. | [3+2$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{A{C}_{1}}$ | B. | $\overrightarrow{C{A}_{1}}$ | C. | $\overrightarrow{B{C}_{1}}$ | D. | $\overrightarrow{C{B}_{1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com