15.命題p:B+C=2A,且b+c=2a;命題q:△ABC是正三角形.命題p是命題q的( 。
A.充要條件B.充分條件但不是必要條件
C.必要條件但不是充分條件D.既不是充分條件又不是必要條件

分析 根據(jù)三角形的三角關(guān)系和正弦定理,即可得到△ABC是正三角形,即充分性成立,再判斷必要性成立,問題得以解決.

解答 解:∵B+C=2A=180°-A,
∴A=60°
∵b+c=2a,
∴sinB+sinC=2SinA,
∴2sin$\frac{B+C}{2}$cos$\frac{B-C}{2}$=2sinA,
∴cos$\frac{B-C}{2}$=1,
∴B=C,
∴△ABC是正三角形,
∴命題p是命題q的充分條件,
若:△ABC是正三角形,A=B=C,a=b=c,則B+C=2A,且b+c=2a,
∴命題p是命題q的必要條件,
∴命題p是命題q的充要條件,
故選:A

點(diǎn)評(píng) 本題以三角形為載體,考查了充分條件和必要條件的判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx+ax2+1的圖象在點(diǎn)(1,f(1))處切線的斜率為3.
(1)求實(shí)數(shù)a的值;
(2)證明:存在正實(shí)數(shù)λ,使得|$\frac{1-x}{f(x)-lnx}$|≤λ恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+ax+1.
(1)解不等式f(x)>0.
(2)若f(x)在x∈[-3,1)上恒有f(x)≥-3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a,b是實(shí)數(shù),且函數(shù)f(x)=x+a|x-1|在區(qū)間(0,+∞)內(nèi)存在最小值,則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-x,g(x)=ax2+1,其中e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)F(x)=f(x)-g(x)的導(dǎo)函數(shù)F′(x)在[0,+∞)上是增函數(shù),求實(shí)數(shù)a的最大值;
(2)求證:f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{n}$)>$\frac{n(2n+3)}{2(n+1)}$,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若b=5,a=3,cos(B-A)=$\frac{7}{9}$,則△ABC的面積為5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求值:$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在[0,π]內(nèi)任意取一個(gè)數(shù)x,使得sinx+$\sqrt{3}$cosx≥1的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={-2,-1,1,2,4},B={y|y=log2|x|-1,x∈A},則A∩B=( 。
A.{-2,-1,1}B.{-1,1,2}C.{-1,1}D.{-2,-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案