分析 通過去絕對值符號,利用函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)存在最小值可知,當0<x<1時f(x)單調(diào)遞減、當x>1時f(x)單調(diào)遞增,進而計算可得結(jié)論.
解答 解:∵f(x)=x+a|x-1|,
∴f(x)=$\left\{\begin{array}{l}{(1-a)x+a,}&{x<1}\\{(1+a)x-a,}&{x≥1}\end{array}\right.$,
∵函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)存在最小值,
∴當0<x<1時f(x)單調(diào)遞減,當x>1時f(x)單調(diào)遞增,
∴1-a≤0,1+a≥0,
綜上所述,-1≤a≤1,
故答案為:[-1,1].
點評 本題考查函數(shù)的最值及其幾何意義,考查分類討論的思想,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sinx | B. | y=x3-x | C. | y=2x | D. | y=lg(x+$\sqrt{{x}^{2}+1}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分條件但不是必要條件 | ||
C. | 必要條件但不是充分條件 | D. | 既不是充分條件又不是必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com