14.過(2,0)的函數(shù)$y=\frac{1}{x}$的切線斜率為-1.

分析 設(shè)切點為$({x_0},\frac{1}{x_0})$,求出函數(shù)的導數(shù),運用導數(shù)的幾何意義和兩點的斜率公式,解方程可得切點,進而得到所求斜率.

解答 解:設(shè)切點為$({x_0},\frac{1}{x_0})$,
函數(shù)$y=\frac{1}{x}$的導數(shù)為y′=-$\frac{1}{{x}^{2}}$,
由導數(shù)的幾何意義和兩點的斜率公式,
可得$-\frac{1}{x_0^2}=\frac{{\frac{1}{x_0}}}{{{x_0}-2}}$,
解得x0=1,
則斜率為$-\frac{1}{x_0^2}=-1$.
故答案為:-1.

點評 本題考查導數(shù)的運用:求切線的斜率,考查導數(shù)的幾何意義和直線的斜率公式,以及化簡整理的運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.在區(qū)間[-3,3]上隨機取一個數(shù)x,使得函數(shù)f(x)=ln(1-x)+$\sqrt{x+2}$有意義的概率為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)關(guān)于x的一元二次方程x2+ax-$\frac{b^2}{4}$+1=0.
(1)若a是從1,2,3這三個數(shù)中任取的一個數(shù),b是從0,1,2這三個數(shù)中任取的一個數(shù),求上述方程中有實根的概率;
(2)若a是從區(qū)間[0,3]中任取的一個數(shù),b是從區(qū)間[0,2]中任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.從甲地到乙地有3條公路、2條鐵路,某人要從甲地到乙地共有n種不同的走法,則n=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,左、右焦點分別為F1,F(xiàn)2,點A在雙曲線C上的一點,若|AF1|=2|AF2|,則cos∠F1AF2=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.點P為△ABC邊AB上任一點,則使S△PBC≤$\frac{1}{3}$S△ABC的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線x-y-1=0為函數(shù)f(x)=logax+b在點(1,f(1))處的一條切線.
(1)求a,b的值;
(2)若函數(shù)y=f(x)的圖象C1與函數(shù)g(x)=mx+$\frac{n}{x}$(n>0)的圖象C2交于P(x1,y1),Q(x2,y2)兩點,其中x1<x2,過PQ的中點R作x軸的垂線分別交C1,C2于點M、N,設(shè)C1在點M處的切線的斜率為k1,C2在點N處的切線的斜率為k2,求證:k1<k2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.5名男生、2名女生站成一排照像:
(1)兩名女生都不站在兩端,有多少不同的站法?
(2)兩名女生要相鄰,有多少種不同的站法?
(3)兩名女生不相鄰,有多少種不同的站法?
(4)女生甲不在左端,女生乙不在右端.有多少不同的站法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某班級6名同學登臺演出,順序有如下要求:同學甲必須排在前兩位.同學乙不能排在第一位,同學丙必須排在最后一位,該班級這六名同學演出順序的編排方案共有(  )
A.54種B.48種C.42種D.36種

查看答案和解析>>

同步練習冊答案