分析 (1)求得已知圓的圓心和半徑,設(shè)k=$\frac{y}{x}$,即kx-y=0,則圓心到直線的距離d≤r,加上即可得到最值;
(2)x2+y2+2x+3=(x+1)2+y2+2表示點(x,y)與A(-1,0)的距離的平方加上2,連接AC,交圓C于B,延長AC,交圓于D,可得AB最短,AD最長,加上即可得到所求最值.
解答 解:(1)圓x2+y2-6x-6y+14=0即為(x-3)2+(y-3)2=4,
可得圓心為C(3,3),半徑為r=2,
設(shè)k=$\frac{y}{x}$,即kx-y=0,
則圓心到直線的距離d≤r,
即$\frac{|3k-3|}{\sqrt{1+{k}^{2}}}$≤2,
平方得5k2-18k+5≤0,
解得$\frac{9-2\sqrt{14}}{5}$≤k≤$\frac{9+2\sqrt{14}}{5}$,
故$\frac{y}{x}$的最大值是$\frac{9+2\sqrt{14}}{5}$,最小值為$\frac{9-2\sqrt{14}}{5}$;
(2)x2+y2+2x+3=(x+1)2+y2+2
表示點(x,y)與A(-1,0)的距離的平方加上2,
連接AC,交圓C于B,延長AC,交圓于D,
可得AB為最短,且為|AC|-r=$\sqrt{16+9}$-2=3,
AD為最長,且為|AC|+r=5+2=7,
則x2+y2+2x+3 的最大值為72+2=51,
x2+y2+2x+3的最小值為32+2=11.
點評 本題主要考查直線和圓的方程的應(yīng)用,根據(jù)圓心到直線的距離和半徑之間的關(guān)系以及連接圓外一點與圓心的直線與圓的交點,取得最值是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是真命題,¬p:?x0∈R,f(x0)<0 | B. | p是真命題,¬p:?x0∈R,f(x0)≤0 | ||
C. | p是假命題,¬p:?x0∈R,f(x0)<0 | D. | p是假命題,¬p:?x0∈R,f(x0)≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com