12.如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是( 。
A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC

分析 利用線面垂直的判定與性質(zhì),即可得出結(jié)論.

解答 解:對于A,AP⊥PB,AP⊥PC,PB∩PC=P,則AP⊥平面PBC,∴AP⊥BC,不合題意;
對于B,AP⊥PB,BC⊥PB,不能證明AP⊥BC,合題意;
對于C,平面BPC⊥平面APC,平面BPC∩平面APC=PC,BC⊥PC,∴BC⊥平面PAC,∴BC⊥AP,不合題意;
對于D,AP⊥平面PBC,∴AP⊥BC,不合題意;
故選:B.

點(diǎn)評 本題考查線面垂直的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α是第四象限角tanα=-$\frac{5}{12}$,則cosα=( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)f(x)可導(dǎo),F(xiàn)(x)=f(x)(1+|sinx|),則f(0)=0是F(x)在x=0處可導(dǎo)的(  )
A.充分必要條件B.充分條件但非必要條件
C.必要條件但非充分條件D.既非充分條件又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知ab=$\frac{1}{4}$,a,b∈(0,1),則$\frac{1}{1-a}$+$\frac{2}{1-b}$的最小值為4+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的函數(shù)y=f(x)關(guān)于y軸對稱,且在[0,+∞)上是增加的,則下列關(guān)系成立的是( 。
A.f(3)<f(-4)<f(-π)B.f(-π)<f(-4)<f(3)C.f(-4)<f(-π)<f(3)D.f(3)<f(-π)<f(-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(cosx,sinx)和$\overrightarrow{n}$=($\sqrt{2}$-sinx,cosx).
(1)設(shè)f(x)=$\overrightarrow{m}$,$\overrightarrow{n}$,求函數(shù)y=f($\frac{π}{3}$-2x)的最小正周期和對稱軸方程;
(2)若x∈[π,2π],求|$\overrightarrow{m}$-$\overrightarrow{n}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖.若輸出的S=$\frac{1023}{512}$,則判斷框內(nèi)的條件可以為( 。
A.i<10?B.i≤10?C.i<11?D.i≤11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知lg2=a,lg3=b,則lg1.8=a+2b-1(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知x1、x2是函數(shù)f(x)=x2+mx+t的兩個零點(diǎn),其中常數(shù)m、t∈Z,記$\sum_{i=0}^n{x^i}={x^0}+{x^1}+…+{x^n}$,設(shè)${T_n}=\sum_{r=0}^n{x_1^{n-r}x_2^r}$(n∈N*).
(1)用m、t表示T1、T2;
(2)求證:T5=-mT4-tT3;
(3)求證:對任意的n∈N*,Tn∈Z.

查看答案和解析>>

同步練習(xí)冊答案