A. | 充分必要條件 | B. | 充分條件但非必要條件 | ||
C. | 必要條件但非充分條件 | D. | 既非充分條件又非必要條件 |
分析 由f(0)=0可得$\underset{lim}{x→0}$$\frac{F(x)-F(0)}{x}$=$\underset{lim}{x→0}$$\frac{f(x)(1+|sinx|)}{x}$=$\underset{lim}{x→0}$$\frac{f(x)}{x}$=f′(0);
若F(x)在x=0處可導(dǎo),當(dāng)x在0的左側(cè)附近時(shí),F(xiàn)′(x)=f′(x)(1-sinx)-f(x)cosx,當(dāng)x在0的右側(cè)附近時(shí),F(xiàn)′(x)=f′(x)(1+sinx)+f(x)cosx,從而可得$\underset{lim}{x→{0}^{-}}$$\frac{F(x)-F(0)}{x}$=f′(0)-f(0),$\underset{lim}{x→{0}^{+}}$$\frac{F(x)-F(0)}{x}$=f′(0)+f(0),從而可得f′(0)-f(0)=f′(0)+f(0),從而解得.
解答 解:∵f(0)=0,
∴$\underset{lim}{x→0}$$\frac{F(x)-F(0)}{x}$
=$\underset{lim}{x→0}$$\frac{f(x)(1+|sinx|)}{x}$
=$\underset{lim}{x→0}$$\frac{f(x)}{x}$=f′(0),
故F(x)在x=0處可導(dǎo);
若F(x)在x=0處可導(dǎo),
當(dāng)x在0的左側(cè)附近時(shí),
F(x)=f(x)(1-sinx),
F′(x)=f′(x)(1-sinx)-f(x)cosx,
當(dāng)x在0的右側(cè)附近時(shí),
F(x)=f(x)(1+sinx),
F′(x)=f′(x)(1+sinx)+f(x)cosx,
故$\underset{lim}{x→{0}^{-}}$$\frac{F(x)-F(0)}{x}$=f′(0)-f(0),
$\underset{lim}{x→{0}^{+}}$$\frac{F(x)-F(0)}{x}$=f′(0)+f(0),
∴f′(0)-f(0)=f′(0)+f(0),
∴f(0)=0;
故選:A.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的概念及左右極限的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AP⊥PB,AP⊥PC | B. | AP⊥PB,BC⊥PB | ||
C. | 平面BPC⊥平面APC,BC⊥PC | D. | AP⊥平面PBC |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com