3.已知非零向量$\overrightarrow a,\overrightarrow b$滿足:$|{\overrightarrow a}|=\frac{1}{2}|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,則向量$\overrightarrow a$與$\overrightarrow a-\overrightarrow b$夾角的余弦值為$\frac{1}{4}$.

分析 做出圖形,根據(jù)條件得出△OAC三邊的關系,利用余弦定理求出cosA.

解答 解:∵設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,取AB的中點C,則$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow$),$\overrightarrow{CA}$=$\frac{1}{2}$($\overrightarrow{a}-\overrightarrow$),
∵$|{\overrightarrow a}|=\frac{1}{2}|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,
∴OA=OC=2AC,
∴cosA=$\frac{O{A}^{2}+A{C}^{2}-O{C}^{2}}{2OA•AC}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查了平面向量的數(shù)量積運算,平面向量的幾何意義,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在底角為45°的等腰梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,M,N分別為CD,BC的中點.設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AM}$,$\overrightarrow{AN}$;
(2)若|$\overrightarrow{a}$|=3,求$\overrightarrow{AM}$•$\overrightarrow{AN}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線為y=-2x,且一個焦點與拋物線$y=\frac{1}{4}{x^2}$的焦點相同,則此雙曲線的方程為(  )
A.$\frac{5}{4}{x^2}-5{y^2}=1$B.$5{y^2}-\frac{5}{4}{x^2}=1$C.$5{x^2}-\frac{5}{4}{y^2}=1$D.$\frac{5}{4}{y^2}-5{x^2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);
②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x|的周期是$\frac{π}{2}$;
④$y=sin(2x+\frac{π}{3})(x∈R)$的一個對稱中心為$(-\frac{π}{6},0)$.
其中正確的命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在極坐標系中,已知圓C的圓心坐標為C (2,$\frac{π}{3}$),半徑R=$\sqrt{5}$,圓C的極坐標方程為ρ2-2ρcosθ-2$\sqrt{3}$ρsinθ-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若復數(shù)z滿足方程z•i=i-1,則z=1+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知p:m∈(-2,1),q:m滿足$\frac{x^2}{2+m}-\frac{y^2}{m+1}=1$表示橢圓,那么p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.運動員訓練次數(shù)與運動成績之間的數(shù)據(jù)關系如下:
次數(shù)(x)3033353739444650
成績(y)3034373942464851
(1)做出散點圖;
(2)求出線性回歸方程;
(3)做出殘差圖;
(4)計算R2
(5)試預測該運動員訓練47次及55次的成績.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若數(shù)列{an}滿足an+1+(-1)nan=2n-1,則an+2+an=$\left\{\begin{array}{l}{2}&{n是奇數(shù)}\\{4n}&{n是偶數(shù)}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案