16.設(shè)二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)的橫坐標(biāo)為-2,且圖象過點(diǎn)(0,3),又方程f(x)=0的兩個(gè)實(shí)根的平方和為10.(1)求a,b,c的值;
(2)A={x|ax2+bx+c=3,x∈R},B={x|x2+2(m+1)x+m2-1=0,x∈R},如果B⊆A,求實(shí)數(shù)m的取值范圍.

分析 (1)利用一元二次方程的根與系數(shù)的關(guān)系可得:$\frac{^{2}}{{a}^{2}}$-2×$\frac{c}{a}$=10,根據(jù)二次函數(shù)的性質(zhì)可得:$-\frac{2a}$=-2,c=3,聯(lián)立檢查即可得出.
(2)ax2+bx+c=3,即x2+4x+3=3,可得A={0,-4}.根據(jù)B⊆A,可得B=∅,{0},{-4},{0,-4}.利用一元二次方程的根與系數(shù)及其判別式的關(guān)系即可得出.

解答 解:(1)設(shè)方程f(x)=0的兩個(gè)實(shí)根分別為x1,x2,則x1+x2=-$\frac{a}$,x1•x2=$\frac{c}{a}$,∵${x}_{1}^{2}+{x}_{2}^{2}$=10,∴$({x}_{1}+{x}_{2})^{2}$-2x1•x2=$\frac{^{2}}{{a}^{2}}$-2×$\frac{c}{a}$=10,又$-\frac{2a}$=-2,c=3,
聯(lián)立解得:c=3,a=1,b=4.
(2)ax2+bx+c=3,即x2+4x+3=3,化為x2+4x=0,解得:x=0,-4,∴A={0,-4}.
∵B⊆A,∴B=∅,或B={0},或B={-4},或B={0,-4}.
①B=∅時(shí),△=4(m+1)2-4(m2-1)<0,解得:m<-1;
②B={0},則$\left\{\begin{array}{l}{△=0}\\{{m}^{2}-1=0}\end{array}\right.$,解得m=-1.
③B={-4},則$\left\{\begin{array}{l}{△=0}\\{16-8(m+1)+{m}^{2}-1=0}\end{array}\right.$,解得:m∈∅.
④B={0,-4},則$\left\{\begin{array}{l}{0-4=-(m+1)}\\{0×(-4)={m}^{2}-1}\end{array}\right.$,△>0,聯(lián)立解得m∈∅.
綜上可得:實(shí)數(shù)m的取值范圍是(-∞,-1].

點(diǎn)評 本題考查了二次函數(shù)的性質(zhì)、一元二次方程的根與系數(shù)及其判別式的關(guān)系、集合之間的關(guān)系,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知集合A={x|a-2<x<2a},B={x|x≥2,x∈Z},D={x|x<0,或x≥3}.
(1)當(dāng)a=2時(shí),求:A∩B,(∁RA)∩D,A∪(∁RD);
(2)若A∪D=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則an=2n;記Tn=a1+3a2+…+(2n-1)an,則Tn=6+(2n-3)2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知定義在實(shí)數(shù)集R的函數(shù)f(x)滿足f(1)=4且f(x)導(dǎo)函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為(0,e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正四面體ABCD,點(diǎn)E,F(xiàn)分別為AB,CD的中點(diǎn),邊長為2.
(1)求BC與AF所成的角的余弦值;
(2)BC與AD所成的角;
(3)CE與AF所成角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=$\frac{1}{x}$的圖象關(guān)于點(diǎn)(0,0)對稱,則函數(shù)y=$\frac{1}{x+1}$-1的圖象關(guān)于點(diǎn)(-1,-1)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用“五點(diǎn)法”作出下列函數(shù)的圖象:
(1)y=2sin(3x-$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin($\frac{x}{3}$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有一個(gè)幾何體的三視圖及其尺寸如圖單位(cm),則該幾何體的表面積及體積為( 。
A.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{3}}{3}$cm3B.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{2}}{3}$cm3C.12cm2,$\frac{16\sqrt{3}}{3}$cm3D.12cm2,$\frac{16\sqrt{2}}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把下面在平面內(nèi)成立的結(jié)論類比地推廣到空間,結(jié)論還正確的是(  )
A.如果一條直線與兩條平行線中的一條相交,則必與另一條相交
B.如果兩條直線同時(shí)與第三條直線垂直,則這兩條直線平行
C.如果兩條直線同時(shí)與第三條直線相交,則這兩條直線相交
D.如果一條直線與兩條平行線中的一條垂直,則必與另一條垂直

查看答案和解析>>

同步練習(xí)冊答案