精英家教網 > 高中數學 > 題目詳情
11.已知正四面體ABCD,點E,F分別為AB,CD的中點,邊長為2.
(1)求BC與AF所成的角的余弦值;
(2)BC與AD所成的角;
(3)CE與AF所成角余弦值.

分析 (1取BD中點G,則FG∥BC,∠AFE是BC與AF所成的角(或所成角的補角),由此能求出BC與AF所成的角的余弦值.
(2)取BC中點P,則AP⊥BC,DP⊥BC,BC⊥平面APD,由此能求出BC與AD所成的角.
(3)取BF中點O,連結EO,CO,則EO∥AF,∠CEO是CE與AF所成角(或所成角的補角),由此能求出CE與AF所成角余弦值.

解答 解:(1)取BD中點G,連結AG、FG、AF,
則FG∥BC,∴∠AFE是BC與AF所成的角(或所成角的補角),
∵AG=AF=$\sqrt{4-1}$=$\sqrt{3}$,FG=1,
∴cos∠AFE=$\frac{A{F}^{2}+F{G}^{2}-A{G}^{2}}{2AF•GF}$=$\frac{3+1-3}{2•\sqrt{3}•1}$=$\frac{\sqrt{3}}{6}$,
∴BC與AF所成的角的余弦值為$\frac{\sqrt{3}}{6}$.
(2)取BC中點P,連結AP、DP,
則AP⊥BC,DP⊥BC,且AP∩DP=P,
∴BC⊥平面APD,
又AD?平面APD,∴BC⊥AD,
∴BC與AD所成的角為90°.
(3)取BF中點O,連結EO,CO,則EO∥AF,
∴∠CEO是CE與AF所成角(或所成角的補角),
∵OE=$\frac{AF}{2}=\frac{\sqrt{3}}{2}$,CE=$\sqrt{3}$,CO=$\sqrt{C{F}^{2}+(\frac{BF}{2})^{2}}$=$\sqrt{1+\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$,
∴cos∠CEO=$\frac{C{E}^{2}+O{E}^{2}-C{O}^{2}}{2•CE•OE}$=$\frac{3+\frac{3}{4}-\frac{7}{4}}{2•\sqrt{3}•\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$,
∴CE與AF所成角余弦值為$\frac{2}{3}$.

點評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.設數列{an}滿足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=a2n-1,{an}的前n項和為Sn(a>0,a≠1,n∈N*).
(1)求an;
(2)求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{({a}^{2n}-1)n}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.設a>0,f(x)=$\frac{{e}^{x}}{a}$-$\frac{a}{{e}^{x}}$是R上的奇函數.
(1)求a的值;
(2)證明:y=f(x)-2x在(0,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設等差數列{an}的前n項和為Sn,若a6=S3=12,則a8=( 。
A.16B.14C.12D.10

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知集合A={x|x>a+5或x<a},B={x|2≤x≤4},若A∩B≠∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.設二次函數y=ax2+bx+c的圖象的頂點的橫坐標為-2,且圖象過點(0,3),又方程f(x)=0的兩個實根的平方和為10.(1)求a,b,c的值;
(2)A={x|ax2+bx+c=3,x∈R},B={x|x2+2(m+1)x+m2-1=0,x∈R},如果B⊆A,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知f(x)=3x-1,g(x)=2x+3,求f[g(x)],g[f(x)].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知實數x,y滿足方程x2+y2=3,求$\frac{y+1}{x+3}$的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.如圖所示,一個圓柱形乒乓球筒,高為40厘米,底面半徑為4厘米.球筒的上底和下底分別粘有一個乒乓球,乒乓球與球筒底面及側面均相切(球筒和乒乓球厚度忽略不計).一個平面與兩乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個橢圓,則該橢圓的離心率為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

同步練習冊答案