長(zhǎng)方體ABCD-A1B1C1D1中,寬、長(zhǎng)、高分別為3、4、5,現(xiàn)有一個(gè)小蟲(chóng)從A出發(fā)沿長(zhǎng)方體表面爬行到C1來(lái)獲取食物,求其路程的最小值.
考點(diǎn):多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:求A點(diǎn)到C1的最短距離,由兩點(diǎn)之間直線(xiàn)段最短,想到需要把長(zhǎng)方體剪開(kāi)再展開(kāi),把A到C1的最短距離轉(zhuǎn)化為求三角形的邊長(zhǎng)問(wèn)題,根據(jù)實(shí)際圖形,應(yīng)該有三種展法,展開(kāi)后利用勾股定理求出每一種情況中AC1的長(zhǎng)度,比較三個(gè)值的大小后即可得到結(jié)論.
解答: 解:把長(zhǎng)方體含AC1的面作展開(kāi)圖,有三種情形如圖所示:利用勾股定理可得AC1的長(zhǎng)分別為
90
74
、
80

由此可見(jiàn)圖②是最短線(xiàn)路,其路程的最小值為
74
點(diǎn)評(píng):本題考查了多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查了學(xué)生的空間想象能力和思維能力,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,解答的關(guān)鍵是想到對(duì)長(zhǎng)方體的三種展法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>ln2-1,函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間與極值,指出方程f(x)=0的根的個(gè)數(shù);
(2)求證:當(dāng)x>0時(shí),不等式ex>x2-2ax+1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
OA
=(3,1),
OB
=(-1,2),
OC
OB
BC
OA
(O為坐標(biāo)原點(diǎn))
(1)求點(diǎn)C的坐標(biāo);
(2)若
OD
+
OA
=
OC
,求
OD
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x-y)+(2x-3)i=(3x+y)+(x+2y)i,其中x,y∈R,i是虛數(shù)單位,求x與y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
2
2x+1

(1)若f(x)是奇函數(shù),求a的值;
(2)證明函數(shù)f(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓短軸的端點(diǎn)和焦點(diǎn)組成的四邊形為正方形,且
2a2
c
=4.
(1)求橢圓方程;
(2)直線(xiàn)l過(guò)點(diǎn)P(0,2),且與橢圓相交于A、B兩點(diǎn),當(dāng)△AOB面積取得最大值時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品的廣告費(fèi)用支出x(萬(wàn)元)與銷(xiāo)售額(萬(wàn)元)y之間有如下的對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求最小二乘法求出 y 關(guān)于x的線(xiàn)性回歸方程
y
=
b
x+
a
;
(參考數(shù)據(jù):
5
i-1
xi2=22+42+52+66+82=145,
5
i-1
xiyi=1380)
(3)據(jù)此估計(jì)廣告費(fèi)用為10(萬(wàn)元)銷(xiāo)售收入y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)的頂點(diǎn)坐標(biāo)為(1,-4),且f(0)=-3.
(1)求f(x)的解析式;
(2)在區(qū)間[-2,2]上,y=f(x)的圖象恒在y=x+m的圖象的下方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若ab<0,求
b
a
+
a
b
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案