設(shè)a>ln2-1,函數(shù)f(x)=ex-2x+2a,x∈R.
(1)求f(x)的單調(diào)區(qū)間與極值,指出方程f(x)=0的根的個(gè)數(shù);
(2)求證:當(dāng)x>0時(shí),不等式ex>x2-2ax+1成立.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表討論能求出f(x)的單調(diào)區(qū)間區(qū)間及極值.
(2)設(shè)g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知當(dāng)a>ln2-1時(shí),g′(x)最小值為g′(ln2)=2(1-ln2+a)>0.于是對(duì)任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.由此能夠證明ex>x2-2ax+1.
解答: (1)解:∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x(-∞,ln2)ln2(ln2,+∞)
f′(x)-0+
f(x)單調(diào)遞減?2(1-ln2+a)單調(diào)遞增?
故f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),
單調(diào)遞增區(qū)間是(ln2,+∞),
f(x)在x=ln2處取得極小值,
極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a)>0,無(wú)極大值.
∴f(x)=0無(wú)解.
(2)證明:設(shè)g(x)=ex-x2+2ax-1,x∈R,
于是g′(x)=ex-2x+2a,x∈R.
由(1)知當(dāng)a>ln2-1時(shí),
g′(x)最小值為g′(ln2)=2(1-ln2+a)>0.
于是對(duì)任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.
于是當(dāng)a>ln2-1時(shí),對(duì)任意x∈(0,+∞),都有g(shù)(x)>g(0).
而g(0)=0,從而對(duì)任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,
故ex>x2-2ax+1.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間及極值的求法和不等式的證明,具體涉及到導(dǎo)數(shù)的性質(zhì)、函數(shù)增減區(qū)間的判斷、極值的計(jì)算和不等式性質(zhì)的應(yīng)用.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸方程
y
=1.5x-2,則原始數(shù)據(jù)(2,2)的殘差
e
為( 。
A、-1B、1C、0D、0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)?x1∈[1,2],?x2∈[2,3]總有2ax12-x22+2x1x2+4x12(lnx2-lnx1)≥0成立,則實(shí)數(shù)a的取值范圍( 。
A、[-
1
2
,+∞)
B、(-∞,
1
2
]
C、[-
1
2
3
2
-2ln3]
D、[
3
2
-2ln3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈R,則|x|<4成立的一個(gè)必要不充分條件是( 。
A、-3<x<3
B、0<x<2
C、x<4
D、x2<16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,若a1=1,an+1=an+4,則下列各數(shù)中是{an}中某一項(xiàng)的是(  )
A、2007B、2008
C、2009D、2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=a,an+1=c-
1
an

(Ⅰ)設(shè)a=c=2,bn=
1
an-1
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)a=1,求證:{an}是遞增數(shù)列的充分必要條件是c>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)?a,b∈R,當(dāng)a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0.
(1)若a>b,試比較f(a)與f(b)的大小關(guān)系;
(2)若f(1+m)+f(3-2m)≥0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,有面積關(guān)系:
S△PA′B′
S△PAB
=
PA′•PB′
PA•PB
,則在圖2可以類(lèi)比得到什么結(jié)論?并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1中,寬、長(zhǎng)、高分別為3、4、5,現(xiàn)有一個(gè)小蟲(chóng)從A出發(fā)沿長(zhǎng)方體表面爬行到C1來(lái)獲取食物,求其路程的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案