分析 (Ⅰ)由已知條件利用對立事件概率計算公式能求出該顧客中獎的概率.
(Ⅱ)ξ的所有可能值為:0,50,100,150,分別求出相應的概率,由此能求出ξ的分布列和ξ的數(shù)學期望E(ξ).
解答 解:(Ⅰ)∵每10張券中有一等獎券1張,可獲價值100元的獎品;有二等獎券3張,每張可獲價值50元的獎品;其余6張沒有獎,
某顧客從這10張券中任抽2張,
∴該顧客中獎的概率P=1-$\frac{C_6^2}{{C_{10}^2}}$=1-$\frac{15}{45}$=$\frac{2}{3}$,即該顧客中獎的概率為$\frac{2}{3}$. …(4分)
(Ⅱ)ξ的所有可能值為:0,50,100,150(元).…(5分)
P(ξ=0)=$\frac{C_6^2}{{C_{10}^2}}$=$\frac{15}{45}$=$\frac{1}{3}$,
P(ξ=50)=$\frac{C_6^1C_3^1}{{C_{10}^2}}$=$\frac{18}{45}$=$\frac{2}{5}$,
P(ξ=100)=$\frac{C_6^1C_1^1+C_3^2}{{C_{10}^2}}$=$\frac{9}{45}$=$\frac{1}{5}$,
P(ξ=150)=$\frac{C_1^1C_3^2}{{C_{10}^2}}$=$\frac{3}{45}$=$\frac{1}{15}$,
所以ξ的分布列為
ξ | 0 | 50 | 100 | 150 |
P | $\frac{1}{3}$ | $\frac{2}{5}$ | $\frac{1}{5}$ | $\frac{1}{15}$ |
點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left\{{x|x<\frac{1}{3}或x>2}\right\}$ | B. | $\left\{{x|\frac{1}{3}<x<2}\right\}$ | C. | {x|x>2} | D. | $\left\{{x|x<\frac{1}{3}}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{13}$ | B. | $\frac{13}{2}$ | C. | $\frac{2}{17}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com