11.一條水管中水流速度v(單位:m3/s)是時間t(單位:s)的函數(shù):v=2t+cost,則前10s水管中流過的水量是100+sin10m3

分析 求水管中流過的流量即為再指定的時間內(nèi)的速度的積.

解答 解:前10s水管中流過的水量V=${∫}_{0}^{10}(2t+cost)dt$=$({t}^{2}+sint){丨}_{0}^{10}$=100+sin10,
故答案為:100+sin10.

點評 本題考查定積分在實際問題中的簡單應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知角α的終邊位于函數(shù)y=-3x的圖象上,則cos2α的值為-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某家電商場開展購物抽獎促銷活動,顧客購物滿500元即可獲得一次抽獎機會,若每10張券中有一等獎券1張,可獲價值100元的獎品;有二等獎券3張,每張可獲價值50元的獎品;其余6張沒有獎,某顧客從這10張券中任抽2張,求:
(Ⅰ)該顧客中獎的概率;
(Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知數(shù)列{an}的前n項和為Sn,且an=2+(-$\frac{1}{3}$)n-1,若對任意的n∈N*,都有1≤p(Sn-2n)≤3,則實數(shù)p的取值范圍是$[\frac{3}{2},3]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,a=2,b=$\sqrt{3}$,c=1,則最小角為30 度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.請閱讀問題1的解答過程,然后借鑒問題1的解題思路完成問題2的解答:
問題1:已知數(shù)集A={a1,a2,…an}(1≤a1<a2<…<an,n≥2)具有性質(zhì)P:對任意的i,j(1≤i≤j≤n),aiaj與$\frac{a_j}{a_i}$兩數(shù)中至少有一個屬于A.若數(shù)集{a1,2,3,a4}具有性質(zhì)P,求a1,a4的值.
解:對于集合中最大的數(shù)a4,因為a4×a4>a4,3×a4>a4,2×a4>a4
所以$\frac{a_4}{a_4}$,$\frac{a_4}{3}$,$\frac{a_4}{2}$都屬于該集合.
又因為1≤a1<2<3<a4,所以$\frac{a_4}{a_4}<\frac{a_4}{3}<\frac{a_4}{2}<{a_4}$.
所以${a_1}=\frac{a_4}{a_4}=1$,$\frac{a_4}{3}=2,\frac{a_4}{2}=3$,故a1=1,a4=6.
問題2:已知數(shù)集A={a1,a2,…an}(0≤a1<a2<…<an,n≥2)具有性質(zhì)P:
對任意的i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個屬于A.若數(shù)集{a1,1,3,a4}具有性質(zhì)P,求a1,a4的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,則x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)D是△ABC所在平面內(nèi)一點,$\overrightarrow{AB}$=-2$\overrightarrow{DC}$,則( 。
A.$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$B.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{3}{2}$$\overrightarrow{AB}$C.$\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AB}$D.$\overrightarrow{BD}$=$\frac{3}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,PA⊥平面ADE,B,C分別是AE,DE的中點,AE⊥AD,AD=AE=AP=2.
(Ⅰ)求二面角A-PE-D的余弦值;
(Ⅱ)點Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求線段BQ的長.

查看答案和解析>>

同步練習冊答案