17.命題“若a2+b2=0,則a=0且b=0”的逆否命題是( 。
A.若a≠0或b≠0,則a2+b2≠0B.若a2+b2≠0,則a≠0且b≠0
C.若a2+b2≠0,則a≠0或b≠0D.若a=0且b=0,則a2+b2≠0

分析 根據(jù)逆否命題的定義進(jìn)行判斷即可.

解答 解:命題逆否命題是:若a≠0或b≠0,則a2+b2≠0,
故選:A

點(diǎn)評(píng) 本題主要考查逆否命題的判斷,根據(jù)逆否命題的定義是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線y2=16x上有一點(diǎn)P,F(xiàn)是它的焦點(diǎn).
(1)若P點(diǎn)準(zhǔn)線的距離為20,求P點(diǎn)坐標(biāo);
(2)若P點(diǎn)是動(dòng)點(diǎn),M是線段PF的中點(diǎn),求M點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=1,DE=5.
(1)求棱錐C-ADE的體積;
(2)求證:平面ACE⊥平面CDE;
(3)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AD,點(diǎn)Q,R分別是CD,PD中點(diǎn).
(1)求證:AR⊥平面PCQ;
(2)若M是BC中點(diǎn),N在PB上,且PN=3NB,求證:MN∥平面PAQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=log2x在區(qū)間$[{\frac{1}{2},2}]$上的最小值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)在棱CC1上是否存在點(diǎn)E,使AE⊥A1B?若存在,求出EC的長(zhǎng)度;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=4x-2x+1+3,當(dāng)x∈[-2,1]時(shí),f(x)的最大值為m,最小值為n,
(1)若角α的終邊經(jīng)過(guò)點(diǎn)P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+$\frac{π}{m}$)+n,求g(x)的最大值及自變量x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AB=AP,E為棱PD的中點(diǎn).
(Ⅰ)證明:AE⊥CD;
(Ⅱ)求直線AE與平面PBD所成角的正弦值;
(Ⅲ)若F為AB中點(diǎn),棱PC上是否存在一點(diǎn)M,使得FM⊥AC,若存在,
求出$\frac{PM}{MC}$的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若直線2x-y-4=0在x軸和y軸上的截距分別為a和b,則a-b的值為(  )
A.6B.2C.-2D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案