分析 (Ⅰ)設(shè)“甲第一次取到白球”的事件為A,則P(A)=P(ξ=1),由此能求出甲第一次取球就取到白球的概率.
(Ⅱ)由題意知ξ的可能取值為1,2,3,4,5,分別求出相應(yīng)的概率,由此能求出取球次數(shù)ξ的概率分布和數(shù)學(xué)期望.分)
解答 解:(Ⅰ)設(shè)“甲第一次取到白球”的事件為A,則P(A)=P(ξ=1).
因?yàn)槭录唉?1”表示“甲第一次取球就取到白球”,
所以P(A)=P(ξ=1)=$\frac{3}{7}$.(4分)
(Ⅱ)由題意知ξ的可能取值為1,2,3,4,5.(6分)
P(ξ=1)=$\frac{3}{7}$;
P(ξ=2)=$\frac{4×3}{7×6}$=$\frac{2}{7}$;
P(ξ=3)=$\frac{4×3×3}{7×6×5}$=$\frac{6}{35}$;
P(ξ=4)=$\frac{4×3×2×3}{7×6×5×4}$=$\frac{3}{35}$;
P(ξ=5)=$\frac{4×3×2×1×3}{7×6×5×4×3}$=$\frac{1}{35}$.(10分)
所以取球次數(shù)ξ的概率分布如下表所示:
ξ | 1 | 2 | 3 | 4 | 5 |
P | $\frac{3}{7}$ | $\frac{2}{7}$ | $\frac{6}{35}$ | $\frac{3}{35}$ | $\frac{1}{35}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20,2 | B. | 24,4 | C. | 25,2 | D. | 25,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α∥β,m∥α,n∥β,則m∥n | B. | 若α⊥β,m⊥α,n∥β,則m⊥n | ||
C. | 若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β | D. | 若m⊥α,n?β,m⊥n,則α⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com