9.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球.從中一次隨機(jī)摸出2只球,則這2只球顏色為一紅一黃的概率為$\frac{1}{3}$.

分析 根據(jù)題意,把4個(gè)小球分別編號(hào),用列舉法求出基本事件數(shù),計(jì)算對(duì)應(yīng)的概率即可.

解答 解:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)镃1、C2,則
一次取出2只球,基本事件為AB、AC1、AC2、BC1、BC2、C1C2共6種,
其中2只球的顏色不同的是BC1、BC2共2種;
所以所求的概率是P=$\frac{2}{6}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了用列舉法求古典概型的概率的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.求下列函數(shù)的零點(diǎn),可以采用二分法的是( 。
A.f(x)=x4B.f(x)=tanx+2(-$\frac{π}{2}$<x<$\frac{π}{2}$)
C.f(x)=cosx-1D.f(x)=|2x-3|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2-c2+ab=0,則角C=( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.雙曲線$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{3}=1$的焦點(diǎn)為F1和F2,點(diǎn)P在雙曲線上,如果線段PF1的中點(diǎn)在y軸上,|PF1|:|PF2|=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A={x|$\frac{1}{3}<{3}^{x}$<9},B={x|x-1>0}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列有關(guān)命題的敘述,正確的序號(hào)為②④.
①若p∨q為真命題,則p∧q為真命題.
②“x>5”是“x2-4x-5>0”的充分不必要條件.
③曲線$\frac{x^2}{20-m}+\frac{y^2}{6-m}=1\;(m<6)$與曲線$\frac{x^2}{5-n}+\frac{y^2}{9+n}=1\;(n>5)$的焦點(diǎn)相同.
④已知命題p:F1,F(xiàn)2是平面內(nèi)距離為6的兩定點(diǎn),動(dòng)點(diǎn)M在此平面內(nèi),且滿足|MF1|+|MF2|=8,則M點(diǎn)的軌跡是橢圓;命題q:F1,F(xiàn)2是平面內(nèi)距離為6的兩定點(diǎn),動(dòng)點(diǎn)M在此平面內(nèi),且滿足||MF1|-|MF2||=6,則M點(diǎn)在軌跡是雙曲線;則命題p∧?q是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x3-x2+x+1,
(1)求函數(shù)在點(diǎn)(1,2)處的切線
(2)求函數(shù)在點(diǎn)(1,2)處的切線與函數(shù)g(x)=x2圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)P(x,y)是拋物線y2=4x上任意一點(diǎn),Q是圓C:(x+2)2+(y-4)2=1上任意一點(diǎn),則|PQ|+x的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.焦點(diǎn)為(0,±3)且與雙曲線$\frac{x^2}{2}$-y2=1有相同的漸近線的雙曲線方程是$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{6}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案