10.求下列函數(shù)的零點(diǎn),可以采用二分法的是(  )
A.f(x)=x4B.f(x)=tanx+2(-$\frac{π}{2}$<x<$\frac{π}{2}$)
C.f(x)=cosx-1D.f(x)=|2x-3|

分析 求出函數(shù)的值域,即可判斷選項(xiàng)的正誤;

解答 解:f(x)=x4不是單調(diào)函數(shù),y≥0,不能用二分法求零點(diǎn),
f(x)=tanx+2是單調(diào)函數(shù),y∈R,能用二分法求零點(diǎn).
f(x)=cosx-1不是單調(diào)函數(shù),y≤0,不能用二分法求零點(diǎn).
f(x)=|2x-3|,不是單調(diào)函數(shù)y≥0,不能用二分法求零點(diǎn).
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)判斷,二分法的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=sin2x•cos(α-$\frac{π}{4}$)+(1-2sin2x)•sin(α-$\frac{π}{4}$).
(1)若α∈[$\frac{π}{4}$,$\frac{π}{2}$],x∈[0,$\frac{π}{2}$],求f(x)的最大值;
(2)是否存在實(shí)數(shù)x與α,使得f(x)=2-cosα成立?若存在,請(qǐng)給出一組,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三棱錐A-BCD中,E是BC的中點(diǎn),AB=AD,BD⊥DC,求證:AE⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2cos(ωx+φ)+1(x∈R,ω>0,-$\frac{π}{2}$<φ<0)的圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$,且f(0)=2.
(I)求ω和φ的值;
(Ⅱ)求函數(shù)f(x)的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將直線y=3x繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn)45°,再向右平移1個(gè)單位長(zhǎng)度,所得到的直線方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對(duì)于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0成立,則稱x0為f(x)的一個(gè)動(dòng)點(diǎn).設(shè)函數(shù)f(x)=x2+ax+b.
(1)當(dāng)a=-1,b=-3時(shí),求f(x)的不動(dòng)點(diǎn);
(2)若f(x)有兩個(gè)相異的不動(dòng)點(diǎn)x1,x2
①當(dāng)-2<x1<0<x2<1時(shí),求|3a+b-3|的取值范圍;
②若|x1|<2且|x1-x2|=2,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,CD為AB邊上的高,|$\overrightarrow{CD}$|=1,$\overrightarrow{BD}$•$\overrightarrow{DA}$=1,則$\overrightarrow{CA}$•$\overrightarrow{CB}$=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過(1,5)
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性(不必證明);
(3)若x2+4≥ax在(0,+∞)上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球.從中一次隨機(jī)摸出2只球,則這2只球顏色為一紅一黃的概率為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案