分析 (1)由圖象可得A值,由周期公式可得ω,代點(diǎn)結(jié)合角的范圍可得φ,可得解析式;
(2)由$0≤x≤\frac{π}{2}$和三角函數(shù)的最值可得.
解答 解:(1)由圖象可得A=$\frac{2}{3}$,由$\frac{T}{2}$=-$\frac{π}{12}$-(-$\frac{7π}{12}$)=$\frac{π}{2}$可得周期T=π,
∴ω=$\frac{2π}{T}$=2,∴f(x)=$\frac{2}{3}$sin(2x+φ),
∵$f(x)=\frac{2}{3}sin(2x+φ)過(guò)點(diǎn)(-\frac{π}{12},\frac{2}{3})$,∴$sin(-\frac{π}{6}+φ)=1$
又0<φ<π,∴$-\frac{π}{6}<φ-\frac{π}{6}<\frac{5π}{6}$,故$φ-\frac{π}{6}=\frac{π}{2}$,可得$φ=\frac{2π}{3}$,
∴此函數(shù)的解析式為:$f(x)=\frac{2}{3}sin(2x+\frac{2π}{3})$;
(2)∵$0≤x≤\frac{π}{2}$,∴$\frac{2π}{3}≤2x+\frac{2π}{3}≤\frac{5π}{3}$,
∴f(x)在$2x+\frac{2π}{3}=\frac{2π}{3}$即x=0時(shí)取得最大值$f(0)=\frac{2}{3}sin\frac{2π}{3}=\frac{{\sqrt{3}}}{3}$,
f(x)在$2x+\frac{2π}{3}=\frac{3π}{2}$即$x=\frac{5π}{12}$時(shí)取得最小值$f(0)=\frac{2}{3}sin\frac{3π}{2}=-\frac{2}{3}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和解析式,涉及三角函數(shù)的最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$] | B. | [-2,2] | C. | [-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$] | D. | [-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$+1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-21-n | B. | 2n-1 | C. | 1 | D. | n |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com