18.函數(shù)y=sinx+tanx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]的值域是( 。
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.[-2,2]C.[-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$]D.[-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$+1]

分析 直接利用函數(shù)的單調(diào)性求得函數(shù)值域.

解答 解:∵函數(shù)y=sinx+tanx在x∈[-$\frac{π}{4}$,$\frac{π}{4}$]上為增函數(shù),
∴${y}_{min}=-\frac{\sqrt{2}}{2}-1$,${y}_{max}=\frac{\sqrt{2}}{2}+1$.
故選:D.

點(diǎn)評 本題考查函數(shù)值域的求法,訓(xùn)練了利用函數(shù)單調(diào)性求函數(shù)的值域,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在正項(xiàng)等比數(shù)列{an}中,前n項(xiàng)和為Sn,a5=1,a6+a7=6,則S5=$\frac{31}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是A1D1,D1C1的中點(diǎn),則異面直線EF與AB1所成角為(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=x3cosx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<\frac{π}{2})$的圖象經(jīng)過三點(diǎn)$({0,\frac{1}{8}}),({\frac{5}{12},0}),({\frac{11}{12},0})$,在區(qū)間$({\frac{5}{12},\frac{11}{12}})$內(nèi)有唯一的最小值.
(Ⅰ)求出函數(shù)f(x)=Asin(ωx+ϕ)的解析式;
(Ⅱ)求函數(shù)f(x)在R上的單調(diào)遞增區(qū)間和對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)圖象的一段如圖所示
(1)求此函數(shù)的解析式; 
(2)求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)求值:($\frac{1}{co{s}^{2}80°}$-$\frac{3}{co{s}^{2}10°}$)•$\frac{1}{cos20°}$;
(2)已知α、β是銳角,cosα=$\frac{4}{5}$,tan(α-β)=-$\frac{1}{3}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}與{bn}滿足bn+1-bn=3(an+1-an),n∈N*,在數(shù)列{an}中,an=$\frac{{n}^{2}}{3}$-16n,設(shè)數(shù)列{bn}中的最小項(xiàng)是第k項(xiàng),則k等于( 。
A.30B.28C.26D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)列{an}中,an=(2n-1)3n,a1=3,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案