19.設(shè)a>0,b>0,分別用綜合法與分析法求證:a3+b3≥a2b+ab2

分析 使用做差法和及逆推導(dǎo)即可證明結(jié)論.

解答 證明:(1)綜合法:
∵a>0,b>0,∴a+b>0,(a-b)2≥0.
∴(a-b)2(a+b)≥0.即(a2-b2)(a-b)≥0.
∴a3-a2b-ab2+b3≥0,
∴a3+b3≥a2b+ab2
(2)分析法:
欲證a3+b3≥a2b+ab2,
只需證:a3+b3-(a2b+ab2)≥0,
只需證:(a-b)(a2-b2)≥0,
即證(a-b)2(a+b)≥0.
顯然上式成立,
∴a3+b3≥a2b+ab2

點(diǎn)評 本題考查了不等式的證明,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知過拋物線y2=2px(p>0)的焦點(diǎn)F且斜率為$\sqrt{3}$的直線與拋物線交于A,B兩點(diǎn),且|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若f(x)=$\left\{{\begin{array}{l}{{{log}_2}x}&{(x>0)}\\{f(x+5)}&{(x≤0)}\end{array}}$,則f(-11)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x|x-a|,a∈R,g(x)=x2-1.
(1)當(dāng)a=1時(shí),解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x-$\sqrt{1-2x}$.
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的值域;
(3)用定義證明函數(shù)f(x)在其定義域上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).若f(x)=ax2+(b+1)x+b-1(a≠0).
(1)若a=1,b=3,求函數(shù)f(x)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動點(diǎn),且線段AB的中點(diǎn)在直線y=-x+$\frac{1}{2{a}^{2}+1}$上,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=x2+ax+lnx不是單調(diào)函數(shù).
(1)求a的取值范圍;
(2)如果對滿足條件的一個(gè)實(shí)數(shù)a,函數(shù)f(x)+m都至多有一個(gè)零點(diǎn),求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知經(jīng)過點(diǎn)P(1,$\frac{3}{2}$)的兩個(gè)圓C1,C2都與直線l1:y=$\frac{1}{2}$x,l2:y=2x相切,則這兩圓的圓心距C1C2等于$\frac{4\sqrt{5}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z=(k2-3k-4)+(k-1)i(k∈R):
(1)若復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)位于第二象限,求k的取值范圍;
(2)若復(fù)數(shù)z•i∈R,求復(fù)數(shù)z的模|z|?

查看答案和解析>>

同步練習(xí)冊答案