12.設(shè)圓弧所對(duì)的圓心角為30°,半徑為r=3,則弧長l=$\frac{π}{2}$.

分析 根據(jù)弧長公式即可計(jì)算得解.

解答 解:∵圓弧所對(duì)的圓心角為30°=$\frac{π}{6}$,半徑為r=3,
∴則弧長l=$\frac{π}{6}×3$=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查了弧長公式的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,且a3=-6,a6=0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若等比數(shù)列{bn}滿足b1=a2,b2=a1+a2+a3,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,且滿足Sn=2an-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求和S1•Cn0+S2•Cn1+S3•Cn2+…+Sn+1•Cnn
(3)設(shè)有m項(xiàng)的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+$\frac{1}{_{1}}$)+lg(1+$\frac{1}{_{2}}$)+…+lg(1+$\frac{1}{_{n}}$)=lg(log2an),問數(shù)列{bn}最多有幾項(xiàng)?并求這些項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足:a1=$\frac{1}{6}$,前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$an
(1)寫出a2,a3,a4
(2)猜出an的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.我校數(shù)學(xué)老師這學(xué)期分別用A、B兩種不同的教學(xué)方式試驗(yàn)高一甲、乙兩個(gè)班(人數(shù)均為60人,入學(xué)時(shí)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同,勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名學(xué)生的數(shù)學(xué)期末考試成績,得到莖葉圖:

(1)依莖葉圖判斷哪個(gè)班的平均分高?
(2)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
甲班乙班合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{1}{3}{x^3}+m{x^2}$-2x,x∈R.
(1)若m=-$\frac{1}{2}$,求f(x)的極值.
(2)若f(x)對(duì)于任意的x1,x2∈[-1,1]恒有(x1-x2)(f(x1)-f(x2))<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.由0,1,2,3,4,5這六個(gè)數(shù)字.能組成156個(gè)無重復(fù)數(shù)字的四位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{1-x}$+lgx的定義域?yàn)椋?,1]. $f(log_2^{({x^2}-1)})$的定義域?yàn)閧x|-$\sqrt{3}$≤x<$-\sqrt{2}$或$\sqrt{2}$<x≤$\sqrt{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式的前三項(xiàng)的系數(shù)成等差數(shù)列;
(1)求($\sqrt{x}$•$\frac{1}{2\root{4}{x}}$)n展開式中所有的有理項(xiàng);
(2)求($\sqrt{x}$-$\frac{2}{{x}^{2}}$)n展開式中系數(shù)的絕對(duì)值最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案