15.一個與正整數(shù)n有關的命題,當n=2時命題成立,且由n=k時命題成立可以推得n=k+2時命題也成立,則(  )
A.該命題對于n>2的自然數(shù)n都成立B.該命題對于所有的正偶數(shù)都成立
C.該命題何時成立與k取值無關D.以上答案都不對

分析 當n=2時命題成立,則對n=4,6,8,…,2m也成立,即有n為正偶數(shù)均成立,即可得結論.

解答 解:命題對于n=k(k∈N*)時成立,那么它對n=k+2也成立.
若當n=2時命題成立,則對n=4,6,8,…,2m也成立,
即該命題對所有正偶數(shù)n成立,
故選:B.

點評 本題主要考查數(shù)學歸納法的運用,關鍵是正確利用歸納假設.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知角φ的終邊經(jīng)過點P(1,1),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{3}$,則$f({\frac{π}{6}})$=( 。
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.為了了解某天甲乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).當產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.已知甲廠該天生產(chǎn)的產(chǎn)品共有98件,如表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(I)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(Ⅱ)從乙廠抽出取上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品至少有1件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.將函數(shù)f(x)=-cos2x的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x),則g(x)具有性質(zhì)(  )
A.最大值為1,圖象關于直線x=$\frac{π}{2}$對稱B.在(0,$\frac{π}{4}$)上單調(diào)遞減,為奇函數(shù)
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,為偶函數(shù)D.周期為π,圖象關于點($\frac{3π}{8}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期第一次月考數(shù)學(理)試卷(解析版) 題型:解答題

已知函數(shù).

(Ⅰ)求的值域;

(Ⅱ)設△的內(nèi)角A、B、C所對的邊分別為a、b、c,已知為銳角,,,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(1)求數(shù)列的公比q;
(2)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期第一次月考數(shù)學(理)試卷(解析版) 題型:解答題

設有關于的一元二次方程

(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;

(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求函數(shù)y=$\frac{x}{\sqrt{{x}^{2}-3x+2}}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=sinx+sin(x+$\frac{π}{3}$),x∈R.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設x1,x2∈[-$\frac{π}{6}$,$\frac{5π}{6}$],若f(x1)=f(x2)(x1≠x2),求f(x1+x2)的值.

查看答案和解析>>

同步練習冊答案