分析 (Ⅰ)根據(jù)f(x)為奇函數(shù),便有f(0)=0,這便得到b=0,再根據(jù)f$(\frac{1}{2})$=$\frac{2}{5}$即可求出a=1,從而得出f(x)的解析式;
(Ⅱ)求f′(x)=$\frac{1-{x}^{2}}{({x}^{2}+1)}$,容易判斷f′(x)>0,從而知道f(x)在(-1,1)上單調(diào)遞增,而將原不等式變成f(t-1)<f(-t),這便得到$\left\{\begin{array}{l}{-1<t-1<1}\\{-1<-t<1}\\{t-1<-t}\end{array}\right.$,解該不等式組即得原不等式的解.
解答 解:(Ⅰ)因?yàn)閒(x)為奇函數(shù),且在x=0有定義;
∴f(0)=b=0;
又$f(\frac{1}{2})=\frac{2}{5}$,即$\frac{{\frac{1}{2}a}}{{{{({\frac{1}{2}})}^2}+1}}=\frac{2}{5}$;
解得a=1;
∴$f(x)=\frac{x}{{{x^2}+1}}$;
(Ⅱ)由(Ⅰ)得,$f'(x)=\frac{{1-{x^2}}}{{{{({{x^2}+1})}^2}}}$;
∵x∈(-1,1),0≤x2<1,1-x2>0;
∴f'(x)>0,即f(x)在(-1,1)上單調(diào)遞增;
由f(t-1)+f(t)<0,得f(t-1)<-f(t)=f(-t);
∴$\left\{{\begin{array}{l}{-1<t-1<1}\\{-1<-t<1}\\{t-1<-t}\end{array}}\right.$;
解得$0<t<\frac{1}{2}$;
∴原不等式解集為(0,$\frac{1}{2}$).
點(diǎn)評(píng) 考查奇函數(shù)在原點(diǎn)有定義時(shí),f(0)=0,根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,商的求導(dǎo)公式,以及奇函數(shù)的定義的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (1,5) | C. | (2,3) | D. | (2,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂心 | B. | 外心 | C. | 內(nèi)心 | D. | 重心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com