【題目】設(shè)橢圓: 的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線: 相切,求橢圓的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由
【答案】(1)(2)(3)
【解析】試題分析:(1)設(shè),由,所以,由于,即為的中點,故,即,于是,于是的外接圓圓心為,半徑,該圓與直線相切,則,即可得出值,從而可求橢圓的方程;
(2)由(1)可知,設(shè),聯(lián)立方程組,整理得,寫出韋達定理,由于菱形的對角線垂直,故, 即,即,由已知條件知且,所以,即可求出的取值范圍.
試題解析:
(1)設(shè),由,
知,因為,所以,
由于,即為的中點,
故,所以,即,
于是,于是的外接圓圓心為,半徑,
該圓與直線相切,則,解得,
所以,所求橢圓的方程為.
(2)由(1)可知,
設(shè),聯(lián)立方程組,整理得,
設(shè),則,
,
由于菱形的對角線垂直,故,
故,即,
即,
由已知條件知且,
所以,所以,
故存在滿足題意的點,且的取值范圍是,
當(dāng)直線的斜率不存在時,不合題意.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對數(shù)的底數(shù)).且曲線y=f(x)在點(1,f(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
據(jù)此計算出的回歸方程為.
(i)求參數(shù)的估計值;
(ii)若把回歸方程當(dāng)作與的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面結(jié)論正確的是( )
①“所有2的倍數(shù)都是4的倍數(shù),某數(shù)是2的倍數(shù),則一定是4的倍數(shù)”,這是三段論推理,但其結(jié)論是錯誤的.
②在類比時,平面中的三角形與空間中的平行六面體作為類比對象較為合適.
③由平面三角形的性質(zhì)推測空間四面體的性質(zhì),這是一種合情推理.
④一個數(shù)列的前三項是1,2,3,那么這個數(shù)列的通項公式必為.
A. ①③ B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓: 的左焦點是,離心率為,且上任意一點到的最短距離為.
(1)求的方程;
(2)過點的直線(不過原點)與交于兩點、, 為線段的中點.
(i)證明:直線與的斜率乘積為定值;
(ii)求面積的最大值及此時的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:
網(wǎng)購金額 (單位:千元) | 頻數(shù) | 頻率 |
3 | ||
9 | ||
15 | ||
18 | ||
合計 | 60 |
若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.
(1)確定,,,的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com