函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函數(shù),則實(shí)數(shù)a的范圍是( 。
A、a≤-3B、a≤5
C、a≥3D、a≥5
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:結(jié)合二次函數(shù)的性質(zhì)做出判斷即可.
解答: 解:因?yàn)楹瘮?shù)f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函數(shù),
所以-
2(a-1)
-2
≥4,即a≥5,
故選:D.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=
lg|x-4|(x≠4)
1(x=4)
,若關(guān)于的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)根x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一輛汽車在行駛中由于遇到緊急情況而剎車,以速度v(t)=7-3t+
25
1+t
(t的單位:s,v的單位:m/s)行駛至停止,在此期間汽車?yán)^續(xù)行駛的距離(單位:m)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列對(duì)應(yīng)法則中,能建立從集合A={1,2,3,4,5}到集合B={0,3,8,15,24}的映射的是( 。
A、f:x→x2-x
B、f:x→x2-1
C、f:x2+1
D、f:x→x+(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知U=R,集合A={x|y=
1
x-1
+ln(x+3)},B={y|y=lg(2x-x2)},則A∩(∁UB)=(  )
A、(0,1)
B、(1,+∞)
C、(0,1)∪(1,+∞)
D、(-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù):f(x)=lg|x|.請(qǐng)解答下列問題:
(1)判斷函數(shù)f(x)的奇偶性;
(2)作出f(x)的大致圖象并寫出f(x)的單調(diào)遞減區(qū)間;
(3)解方程:[f(x)]2-3f(x)-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx+lnx-kx(k>0).
(Ⅰ)若f(x)在(0,
π
2
]上單調(diào)遞增,求k的取值范圍;
(Ⅱ)設(shè)g(x)=sinx(x>0),若y=g(x)的圖象在y=f(x)的圖象上方,求k的取值范圍;
(Ⅲ)設(shè)n∈N+,證明:
1
π
(4-
1
2n-1
)<
n+1
i=1
sin(
1
2
i-1
(
3
-1)(n+1)
2
+1+
n(n+1)
2
ln2-(
1
2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某房地產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年維修費(fèi)為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元.
(Ⅰ)若扣除投資和各種維修費(fèi),則從第幾年開始獲取純利潤?
(Ⅱ)若干年后開發(fā)商為了投資其他項(xiàng)目,有兩種處理方案:①年平均利潤最大時(shí)以47萬元出售該樓; ②純利潤總和最大時(shí),以10萬元出售該樓,問哪種方案盈利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象恒過定點(diǎn)(0,1)
B、函數(shù)f(x)=x-3在其定義域上是減函數(shù)
C、函數(shù)f(x)=2 
1
x
值域?yàn)椋?,+∞)
D、函數(shù)f(x)=|log2x|在區(qū)間(1,+∞)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案