已知U=R,集合A={x|y=
1
x-1
+ln(x+3)},B={y|y=lg(2x-x2)},則A∩(∁UB)=(  )
A、(0,1)
B、(1,+∞)
C、(0,1)∪(1,+∞)
D、(-3,0]
考點:交、并、補集的混合運算
專題:集合
分析:先將集合A,B化簡,然后求出∁UB,再與A求交集.
解答: 解:由題意A={x|y=
1
x-1
+ln(x+3)}={x|x-1≠0,且x+3>0}=(-3,1)∪(1,+∞),
B={y|y=lg(2x-x2)}為函數(shù)y=lg(2x-x2)值域,此時2x-x2∈(0,1],B=(-∞,0],
則∁UB=(0,+∞),
A∩(∁UB)=(0,1)∪(1,+∞),
故選:C.
點評:本題考察集合的交并補運算,注意集合的表示使用的是描述法,集合A為定義域,而集合B是值域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知全集U={0,1,2,3,4,5,6},集合A={0,1,2},集合B={x|x2-5x+6=0}.求:
(1)集合B;  
(2)(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1是橢圓x2+
y2
4
=1的下焦點,O為坐標原點,點P在橢圓上,則
PF1
PO
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,C的短軸長為4,離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點且與坐標軸不垂直的直線交橢圓C于P1,P2兩點,B1,B2分別是橢圓C的上、下頂點,B1P2與x軸交于Q點,直線P1B1與直線QB2相交于點P,求P點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,圓臺上、下底面半徑分別為4,8,母線與底面所成角為45°,平面ABCD為圓臺的軸截面,E為下底面圓弧上一點,且∠ABE=60°,過CDE的平面交⊙O2于點F.
(Ⅰ)求證:EF∥AB;AE⊥O1F;
(Ⅱ)求平面BCE與底面所成的二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函數(shù),則實數(shù)a的范圍是( 。
A、a≤-3B、a≤5
C、a≥3D、a≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
16
+
y2
9
=1的兩焦點,過點F2的直線交橢圓于點A,B,若|AB|=1,則|AF1|-|BF2|=( 。
A、7B、8C、13D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列關(guān)于點P,直線l、m與平面α、β的命題中,正確的是(  )
A、若m⊥α,l⊥m,則l∥α
B、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,則l⊥β
C、若l,m是異面直線,m?α,m∥β,l?β,l∥α,則α∥β
D、若α⊥β,且l⊥β,m⊥l,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列3,7,13,21,31,…的一個通項公式是( 。
A、an=4n-1
B、an=n2+n+1
C、an=2+2n-n2
D、an=n(n2-1)

查看答案和解析>>

同步練習冊答案