15.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}滿足bn=an+n,若b2,b5,b11成等比數(shù)列,且b3=a6
(1)求an,bn;
(2)求數(shù)列{$\frac{1}{a_nb_n}$}的前n項(xiàng)和Sn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(2)$\frac{1}{a_nb_n}$=$\frac{1}{(n+2)(2n+2)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+2})$,利用“裂項(xiàng)求和”即可得出.

解答 解:(1)設(shè)數(shù)列{an}的公差為d,則an=a1+(n-1)d,bn=a1+(n-1)d+n,
∵b2,b5,b11成等比數(shù)列,且b3=a6
∴$\left\{\begin{array}{l}{{a}_{1}+2d+3={a}_{1}+5d}\\{({a}_{1}+4d+5)^{2}=({a}_{1}+d+2)({a}_{1}+10d+11)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=1}\end{array}\right.$.
于是an=n+2,bn=2n+2.
(2)$\frac{1}{a_nb_n}$=$\frac{1}{(n+2)(2n+2)}$=$\frac{1}{2}(\frac{1}{n+1}-\frac{1}{n+2})$.
∴Sn=$\frac{1}{2}[(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})]$
=$\frac{1}{2}(\frac{1}{2}-\frac{1}{n+2})$
=$\frac{n}{4n+8}$.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)全集U=R,集合A={x|-2<x<2},B={x|x≥1},求A∪B,∁u(A∪B),(∁uA)∩(∁uB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一個袋中有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率是$\frac{2}{5}$;從袋中任意摸出2個球,至少得到1個白球的概率是$\frac{7}{9}$.
(Ⅰ)若袋中共有10個球,
(i)求白球的個數(shù);
(ii)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于$\frac{7}{10}$.并指出袋中哪種顏色的球個數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若不等式x2+y2≤2所表示的區(qū)域?yàn)镸,不等式組$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{y≥2x-6}\end{array}\right.$表示的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域N內(nèi)拋一粒豆子,則豆子落在區(qū)域M內(nèi)的概率為$\frac{π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.從數(shù)字0、1、2、3、4、5這6個數(shù)字中任選三個不同的數(shù)字組成的三位偶數(shù)有52個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為考查某種疫苗預(yù)防疾病的效果,進(jìn)行動物實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未發(fā)病發(fā)病合計(jì)
未注射疫苗20xA
注射疫苗30yB
合計(jì)5050100
現(xiàn)從所有試驗(yàn)動物中任取一只,取到“注射疫苗”動物的概率為$\frac{2}{5}$.
(Ⅰ)求2×2列聯(lián)表中的數(shù)據(jù)的值;
(Ⅱ)繪制發(fā)病率的條形統(tǒng)計(jì)圖,并判斷疫苗是否有效?
(Ⅲ)能夠有多大把握認(rèn)為疫苗有效?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$
P(X2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$與$\overrightarrow b$不平行,且$|{\overrightarrow a}|=|{\overrightarrow b}|≠0$,則下列結(jié)論中正確的是( 。
A.向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$垂直B.向量$\overrightarrow a-\overrightarrow b$與$\overrightarrow a$垂直
C.向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a$垂直D.向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的首項(xiàng)a1=1,且滿足(an+1-1)an+an+1=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{3^n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)a,b都是正數(shù),且滿足$\frac{1}{a}$+$\frac{4}$=${∫}_{0}^{\frac{π}{2}}$cosxdx,則使a+b>c恒成立的實(shí)數(shù)c的取值范圍是(-∞,9).

查看答案和解析>>

同步練習(xí)冊答案