6.已知f(x)在R上是以3為周期的偶函數(shù),f(-2)=3,若tanα=2,則f(10sin2α)的值是( 。
A.1B.-1C.3D.8

分析 根據(jù)三角函數(shù)的倍角公式求出三角函數(shù)值,利用函數(shù)奇偶性和周期性的關系將條件進行轉(zhuǎn)化即可.

解答 解:∵tanα=2,
∴sin2α=2sinαcosα=$\frac{2sinαcosα}{sin^2α+cos^2α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$,
則10sin2α=10×$\frac{4}{5}$=8,
∵f(x)在R上是以3為周期的偶函數(shù),
∴f(10sin2α)=f(8)=f(8-6)=f(2),
∵f(-2)=3,
∴f(2)=3,
即f(10sin2α)=f(2)=3,
故選:C.

點評 本題主要考查函數(shù)值的計算,根據(jù)三角函數(shù)的倍角公式以及函數(shù)的奇偶性和周期性的關系將條件進行轉(zhuǎn)化求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{a+e-2}{x}$(a>0).
(1)當a=2時,求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥a對于x>0的一切值恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x3+6x2-9x+8,則過點(0,0)可以作幾條直線與函數(shù)y=f(x)圖象相切( 。
A.3B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.直線l1:x+y+2=0在x軸上的截距為-2;若將l1繞它與y軸的交點順時針旋轉(zhuǎn)$\frac{π}{2}$,則所得到的直線l2的方程為x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,在正方體ABCD-A1B1C1D1中,B1D與C1D1所成角的余弦值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若直線x+my-2=0的傾斜角為30°,則實數(shù)m的值是( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設函數(shù)f(x)=ex-ax2-2x-1.
(1)若曲線y=f(x)在點(1,f(1))處的切線為l,且l在y軸上的截距為-2,求實數(shù)a的值;
(2)若1<a<2,證明:存在x0∈(-$\frac{1}{a}$,-$\frac{1}{4}$),使得f′(x0)=0,且f(x0)<$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.定點A到定直線1的距離為a,過點A任意作射線交直線l于點Q.
(1)在射線AQ上取一點到P,使得|AP|=$\frac{1}{2}$|AQ|,求點P的軌跡方程;
(2)延長AQ到P′,使得|AP′|=b,求點P′的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在三棱錐P-ABC中,PC⊥平面ABC,△PAC是等腰直角三角形,PA=6,AB⊥BC,CH⊥PB,垂足為H,D為PA的中點,則當△CDH的面積最大時,CB=$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案