【題目】在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點(diǎn),若這n條直線把平面分成f(n)個(gè)平面區(qū)域,則f(3)=;f(n)=

【答案】7;
【解析】解:一條直線(k=1)把平面分成了2部分,記為f(1)=2,f(2)=4,f(3)=7,…
設(shè)前k條直線把平面分成了f(k)部分,
第k+1條直線與原有的k條直線有k個(gè)交點(diǎn),這k個(gè)交點(diǎn)將第k+1條直線分為k+1段,
這k+1段將平面上原來的f(k)部分的每一部分分成了2個(gè)部分,共2(k+1)部分,相當(dāng)于增加了k+1個(gè)部分,
∴第k+1條直線將平面分成了f(k+1)部分,
則f(k+1)﹣f(k)=k+1,令k=1,2,3,….n得
f(2)﹣f(1)=2,f(3)﹣f(2)=3,…,f(n)﹣f(n﹣1)=n,
把這n﹣1個(gè)等式累加,得 f(n)=2+ =2+ =
所以答案是:7,
【考點(diǎn)精析】通過靈活運(yùn)用歸納推理,掌握根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)和定直線的距離之比為,設(shè)動(dòng)點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)過點(diǎn)作斜率不為0的任意一條直線與曲線交于兩點(diǎn),試問在軸上是否存在一點(diǎn)(與點(diǎn)不重合),使得,若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,∠A、∠B、∠C成等差數(shù)列,且 .求:
(1)求∠A,∠C的大。
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asin(2ωx+ )+ +b(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是 ,最小值是
(1)求ω、a、b的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=1,且an , an+1是函數(shù)f(x)=x2﹣bnx+2n的兩個(gè)零點(diǎn),則b10等于(
A.24
B.32
C.48
D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點(diǎn),曲線 ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.

(1)在直角坐標(biāo)系中,求點(diǎn)的直角坐標(biāo)及曲線的參數(shù)方程;

(2)設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)函數(shù)的圖象能否與軸相切?若能與軸相切,求實(shí)數(shù)的值;否則,請(qǐng)說明理由;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項(xiàng)和,且,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)判斷直線與曲線的位置關(guān)系,并說明理由;

2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案