已知函數(shù)f(x)=|x-1|+2|x-a|(a>1)
(1)當(dāng)a=2時,解不等式f(x)≤5;
(2)若f(x)≥5恒成立,求實數(shù)a的取值范圍.
考點:函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)當(dāng)a=2時,f(x)=|x-1|+2|x-2|,對x分類討論,即可解不等式f(x)≤5;
(2)對x分類討論,求出f(x)的最小值,利用f(x)≥5恒成立,可求實數(shù)a的取值范圍.
解答: 解:(1)當(dāng)a=2時,f(x)=|x-1|+2|x-2|.
當(dāng)x<1時,-x+1-2x+4≤5,∴x≥0,∴0≤x<1;
當(dāng)1≤x≤2時,x-1-2x+4≤5,∴x≥-2,∴1≤x≤2;
當(dāng)x>2時,x-1+2x-4≤5,∴x≤
10
3
,∴2<x≤
10
3
,
∴不等式的解集為{x|0≤x≤
10
3
};
(2)當(dāng)x<1時,f(x)=-x+1-2x+2a=-3x+2a+1>2a-2;
當(dāng)1≤x≤a時,f(x)=x-1-2x+2a=-x+2a-1,∴a-1≤f(x)≤2a-2;
當(dāng)x>a時,f(x)=x-1+2x-2a=3x-2a-1>a-1,
∵f(x)≥5恒成立,
∴a-1≥5,
∴a≥6.
點評:本題考查絕對值不等式,考查恒成立問題,考查分類討論是數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+cos2(x+α)+cos2(x+β),其中α、β為常數(shù),且滿足0<α<β<π.對于任意實數(shù)x,是否存在α、β,使得f(x)是與x無關(guān)的定值?若存在,求出α、β的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=
10

(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若二面角A-PC-D的大小為60°,求AP的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,港口A在港口O的正東120海里處,小島B在港口O的北偏東60°的方向,且在港口A北偏西30°的方向上.一艘科學(xué)考察船從港口O出發(fā),沿北偏東30°的OD方向以20海里/小時的速度駛離港口O.一艘給養(yǎng)快艇從港口A以60海里/小時的速度駛向小島B,在B島轉(zhuǎn)運補給物資后以相同的航速送往科考船.已知兩船同時出發(fā),補給裝船時間為1小時.
(1)求給養(yǎng)快艇從港口A到小島B的航行時間;
(2)給養(yǎng)快艇駛離港口A后,最少經(jīng)過多少時間能和科考船相遇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC中,E.F分別是AC.AB的中點,△ABC,△PEF都是正三角形,PF⊥AB.
(Ⅰ)證明PC⊥平面PAB;
(Ⅱ)求二面角P-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-2x+2m,當(dāng)x∈[-1,+∞)時,f(x)≥m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求證:平面PQB⊥平面PAD; 
(2)若二面角M-QB-C為30°,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y均為正實數(shù),且xy=x+y+3,則xy的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高一年級學(xué)生中隨機抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生500名,據(jù)此估計,該模塊測試成績不少于60分的學(xué)生人數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案