精英家教網 > 高中數學 > 題目詳情
13.已知集合M={0,1,2},N={y|y=sin$\frac{π}{2}$x,x∈M},則M∩N=( 。
A.{-1,0,1}B.{-1,0}C.{0,1}D.{0,1,2}

分析 先求出集合N,再由交集定義求M∩N.

解答 解:∵集合M={0,1,2},N={y|y=sin$\frac{π}{2}$x,x∈M}={0,1},
∴M∩N={0,1}.
故選:C.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知函數f(x)=asinx-$\sqrt{3}$cosx的一條對稱軸為x=-$\frac{π}{6}$,且f(x1)•f(x2)=-4,則下列結論正確的是( 。
A.a=±1B.f(x1+x2)=0
C.|x1+x2|的最小值為$\frac{2π}{3}$D.f(x)的最小正周期為2|x1-x2|

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.設集合A={0,1},集合B={x|x>a},若A∩B只有一個元素,則實數a的取值范圍是( 。
A.{a|a<1}B.{a|a≥1}C.{a|0≤a<1}D.{a|a≤1}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.集合A={x|y=lg(-x2+2x)},B={x||x|≤1},則A∩B=( 。
A.{x|1≤x≤2}B.{x|0<x≤1}C.{x|-1≤x≤0}D.{x|x≤2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知全集A={x∈N|x<2},B={0,1,2},則A∩B=( 。
A.{1,2}B.{0,1,2}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知直線x+ay=a+2(a∈R)與圓x2+y2-2x-2y-7=0交于M,N兩點,則線段MN的長的最小值為( 。
A.$4\sqrt{2}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.函數f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求A,ω;
(Ⅱ)設α∈(0,$\frac{π}{2}$),f($\frac{α}{2}$)=2.求α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若$\overrightarrow a=(1,1,k)$,$\overrightarrow b=(2,-1,1)$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則k的值為( 。
A.0或-2B.0或2C.-2D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.計算:${log_6}2+2{log_6}\sqrt{3}+{10^{lg2}}$=3.

查看答案和解析>>

同步練習冊答案