A. | a=±1 | B. | f(x1+x2)=0 | ||
C. | |x1+x2|的最小值為$\frac{2π}{3}$ | D. | f(x)的最小正周期為2|x1-x2| |
分析 首先通過三角函數(shù)的恒等變換把函數(shù)關(guān)系式變性成正弦型函數(shù),進一步利用對稱軸確定函數(shù)的解析式,再利用正弦型函數(shù)的最值確定結(jié)果.
解答 解:f(x)=asinx-$\sqrt{3}$cosx
=$\sqrt{{a}^{2}+3}$sin(x+θ),
由于函數(shù)的對稱軸為:x=-$\frac{π}{6}$,
所以f(-$\frac{π}{6}$)=-$\frac{1}{2}$a-$\frac{3}{2}$,
則:|-$\frac{1}{2}$a-$\frac{3}{2}$|=$\sqrt{{a}^{2}+3}$,
解得:a=1,
所以:f(x)=2sin(x-$\frac{π}{3}$),
由于:f(x1)•f(x2)=-4,
所以函數(shù)必須取得最大值和最小值,
所以:x1=2kπ+$\frac{5π}{6}$或x2=2kπ-$\frac{π}{6}$,
所以:|x1+x2|=4kπ+$\frac{2π}{3}$,當k=0時,最小值為$\frac{2π}{3}$.
故選:C.
點評 本題考查的知識要點:三角函數(shù)的恒等變換,利用對稱軸求函數(shù)的解析式,利用三角函數(shù)的最值確定結(jié)果,考查了數(shù)形結(jié)合能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\frac{1}{x}$ | B. | f(x)=2x | C. | f(x)=lgx | D. | f(x)=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {-1,0} | C. | {0,1} | D. | {0,1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com