分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),先求出m的值,然后通過平移即可求z的最大值.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=y-x得y=x+z,
平移直線y=x+z,
由圖象可知當(dāng)直線y=x+z經(jīng)過點(diǎn)C時(shí),直線y=x+z的截距最小,
此時(shí)z最小,為-3,即z=y-x=-3,
由$\left\{\begin{array}{l}{y-x=-3}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
C也在直線x+y=m上,∴m=2-1=1,
即直線方程為x+y=1,
當(dāng)直線y=x+z經(jīng)過點(diǎn)B時(shí),直線y=x+z的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{x+y=1}\\{y=2x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即B($\frac{1}{3}$,$\frac{2}{3}$),
此時(shí)z=y-x=$\frac{2}{3}$-$\frac{1}{3}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z的實(shí)部為1 | B. | |z|=$\sqrt{2}$ | ||
C. | z的虛部為-i | D. | z的共軛復(fù)數(shù)為1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com