5.已知變量x,y滿足條件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤m}\\{y≥-1}\end{array}\right.$,若z=y-x的最小值為-3,則z=y-x的最大值為$\frac{1}{3}$.

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),先求出m的值,然后通過平移即可求z的最大值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=y-x得y=x+z,
平移直線y=x+z,
由圖象可知當(dāng)直線y=x+z經(jīng)過點(diǎn)C時(shí),直線y=x+z的截距最小,
此時(shí)z最小,為-3,即z=y-x=-3,
由$\left\{\begin{array}{l}{y-x=-3}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
C也在直線x+y=m上,∴m=2-1=1,
即直線方程為x+y=1,
當(dāng)直線y=x+z經(jīng)過點(diǎn)B時(shí),直線y=x+z的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{x+y=1}\\{y=2x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,即B($\frac{1}{3}$,$\frac{2}{3}$),
此時(shí)z=y-x=$\frac{2}{3}$-$\frac{1}{3}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知四棱錐P-ABCD的底面是直角梯形,AB∥CD,AD⊥AB,AD=AB=$\frac{1}{2}$CD=1,PD⊥面ABCD,PD=$\sqrt{2}$,E是PC的中點(diǎn)
(1)證明:BC⊥平面PBD;
(2)求二面角E-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示,某三棱錐的正視圖、俯視圖均為邊長為2的正三角形,則其左視圖面積為(  )
A.2B.$\sqrt{3}$C.$\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(3cosα,1),$\overrightarrow$=(-2,3sinα),且$\overrightarrow{a}⊥\overrightarrow$,其中$α∈(0,\frac{π}{2})$.
(Ⅰ)求sinα和cosα的值;
(Ⅱ)若5sin(α-β)=3$\sqrt{5}$cosβ,β∈(0,π),求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,$\overrightarrow{AB}$=(cos16°,cos74°),$\overrightarrow{BC}$=(2cos61°,2cos29°),則△ABC面積為$\frac{\sqrt{2}}{2}$,|$\overrightarrow{AC}$|$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知AD是△ABC的對(duì)角∠EAC的平分線,交BC的延長線于點(diǎn)D,延長DA交△ABC的外接圓于點(diǎn)F,連結(jié)FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若FA=2,AD=6,求FB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=$\frac{2}{-1+i}$,則下列判斷正確的是( 。
A.z的實(shí)部為1B.|z|=$\sqrt{2}$
C.z的虛部為-iD.z的共軛復(fù)數(shù)為1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)an=$\frac{1}{n}$sin$\frac{nπ}{20}$,sn=a1+a2+…+an,在S1,S2,…,S80中,正數(shù)的個(gè)數(shù)是( 。
A.20B.40C.60D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓錐的底面半徑和高相等,側(cè)面積為4$\sqrt{2}$π,過圓錐的兩條母線作截面,截面為等邊三角形,則圓錐底面中心到截面的距離為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案