10.如圖,已知AD是△ABC的對(duì)角∠EAC的平分線,交BC的延長線于點(diǎn)D,延長DA交△ABC的外接圓于點(diǎn)F,連結(jié)FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若FA=2,AD=6,求FB的長.

分析 (1)欲證FB=FC,可證∠FBC=∠FCB.由A、C、B、F四點(diǎn)共圓可知∠FBC=∠CAD,又同弧所對(duì)的圓周角相等,則∠FCB=∠FAB,而∠FAB=∠EAD,則∠FCB=∠EAD,AD是△ABC外角∠EAC的平分線,得∠CAD=∠EAD,故∠FBC=∠FCB;
(2)由(1)知,求FB的長,即可以轉(zhuǎn)化為求FC的長,聯(lián)系已知條件:告訴FA與AD的長度,即可證△FAC∽△FCD.

解答 (1)證明:∵A、C、B、F四點(diǎn)共圓
∴∠FBC=∠DAC
又∵AD平分∠EAC
∴∠EAD=∠DAC
又∵∠FCB=∠FAB(同弧所對(duì)的圓周角相等),∠FAB=∠EAD
∴∠FBC=∠FCB
∴FB=FC;
(2)解:∵∠BAC=∠BFC,∠FAB=∠FCB=∠FBC
∴∠FCD=∠BFC+∠FBC=∠BAC+∠FAB=∠FAC
∵∠AFC=∠CFD,
∴△FAC∽△FCD
∴FA:FC=FC:FD
∴FB2=FC2=FA•FD=16,
∴FB=4.

點(diǎn)評(píng) 本題主要考查了圓周角定理及相似三角形的判定.在圓中,經(jīng)常利用同弧或者等弧所對(duì)的圓周角相等來實(shí)現(xiàn)角度的等量轉(zhuǎn)化.還要善于將已知條件與所要求的問題集中到兩個(gè)三角形中,運(yùn)用三角形相似來解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,g(x)+f(x)=$\frac{1}{2}$px2-qx,函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(1)試用含有p的式子表示q;
(2)若p≤0,試討論函數(shù)g(x)的單調(diào)性;
(3)當(dāng)x≠1,h(x)f(x)=x2-4tx+4t2,(其中t為常數(shù)),若t∈(0,$\frac{1}{2}$),函數(shù)h(x)有三個(gè)極值點(diǎn)為a,b,c,且a<b<c.證明0<2a<b<1<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,分別以A,B,C為圓心,在△ABC內(nèi)作半徑為2的扇形(圖中的陰影部分),在△ABC內(nèi)任取一點(diǎn)P,如果點(diǎn)P落在陰影內(nèi)的概率為$\frac{1}{3}$,那么△ABC的面積是6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,正方體ABCD-A′B′C′D′中,M為BC邊的中點(diǎn),點(diǎn)P在底面A′B′C′D′上運(yùn)動(dòng)并且使∠MAC′=∠PAC′,那么點(diǎn)P的軌跡是( 。
A.一段圓弧B.一段橢圓弧C.一段雙曲線弧D.一段拋物線弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知變量x,y滿足條件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤m}\\{y≥-1}\end{array}\right.$,若z=y-x的最小值為-3,則z=y-x的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)x,t滿足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=4ax+by(a>0,b>0)的最大值為8,則a=$\frac{2}{3}$時(shí),$\frac{1}{2a}$+$\frac{a}$取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線都與圓(x-c)2+y2=ac(c=$\sqrt{{a}^{2}+^{2}}$相切,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)m>1,在線性約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目標(biāo)函數(shù)z=x+5y的最大值為4,則m的值為3.此時(shí),約束條件下的平面區(qū)域的面積為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在邊長為1的正三角形ABC中,E,F(xiàn)分別為邊AB,AC上的動(dòng)點(diǎn),且滿足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分別是EF,BC的中點(diǎn),則|$\overrightarrow{MN}$|的最小值為( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案