10.點(diǎn)P從點(diǎn)O出發(fā),按逆時針方向沿周長為l的圖形運(yùn)動一周,O,P兩點(diǎn)連線的距離y與點(diǎn)P走過的路程x的函數(shù)關(guān)系如圖,那么點(diǎn)P所走的圖形是( 。
A.B.C.D.

分析 根據(jù)O,P兩點(diǎn)連線的距離y與點(diǎn)P走過的路程x的函數(shù)圖象,由圖象可知函數(shù)值隨自變量的變化成軸對稱性并且變化圓滑.由此即可排除A、C.D.

解答 解:觀察函數(shù)的運(yùn)動圖象,可以發(fā)現(xiàn)兩個顯著特點(diǎn):
①點(diǎn)P運(yùn)動到周長的一半時,OP最大;
②點(diǎn)P的運(yùn)動圖象是拋物線.
設(shè)點(diǎn)M為周長的一半,
A.當(dāng)點(diǎn)P在線段OA上運(yùn)動時,y=x,其圖象是一條線段,不符合條件,

B.滿足條件.

C.當(dāng)點(diǎn)P在線段OA上運(yùn)動時,y=x,其圖象是一條線段,不符合條件,

D.OM≤OP,不符合條件①,并且OP的距離不是對稱變化的,因此排除選項(xiàng)D.

故選:B.

點(diǎn)評 本題考查函數(shù)圖象的識別和判斷,考查對于運(yùn)動問題的深刻理解,解題關(guān)鍵是認(rèn)真分析函數(shù)圖象的特點(diǎn).考查學(xué)生分析問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=x2+ax+b,其中a∈R,b∈R且(b+4)2-a2=4,已知對任意的x∈R不等式f(x)≥-2恒成立.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)+x+4,x<f(x)}\\{f(x)-x,x≥f(x)}\end{array}\right.$,求g(x)的值域;
(3)是否存在實(shí)數(shù)m,n使得不等式m≤f(x)≤n的解集為[m,n]?若存在,求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2,數(shù)列{bn}為等比數(shù)列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)(an+1)•log3bn+2•cn=1,求證:數(shù)列{cn}的前n項(xiàng)和Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在(x3+$\frac{1}{{x}^{2}}$)n的展開式中,若其展開式存在常數(shù)項(xiàng),求n的最小正整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,當(dāng)0≤m<n<3時,有f(m)=f(n),則nf(m)的取值范圍是( 。
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足a1=2,an+1-an=2(n∈N*),數(shù)列{bn}滿足b1=4,b3=14,且數(shù)列{bn-an}是各項(xiàng)均為正數(shù)的等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=bn-2n,求數(shù)列{$\frac{1}{{c}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=2i(1-i)(i為虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則$z+\overline{z}$=( 。
A.4iB.-4iC.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值是( 。
A.-5B.$-\frac{3}{2}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(α)=$\frac{tan(π-α)sin(-2π-α)cos(6π-α)}{sin(α+\frac{3}{2}π)cos(α-\frac{1}{2}π)}$
(1)化簡f(α);
(2)若sinα=-$\frac{2}{3}$,α∈[一π,-$\frac{π}{2}$],求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案