古希臘畢達哥拉斯學派的數(shù)學家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,…,第n個三角形數(shù)為n2n.記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達式:

三角形數(shù)  N(n,3)=n2n

正方形數(shù)  N(n,4)=n2

五邊形數(shù)  N(n,5)=n2n

六邊形數(shù)  N(n,6)=2n2-n

……

可以推測N(n,k)的表達式,由此計算N(10,24)=________

答案:1000
解析:

  [解析與答案]觀察n2和n前面的系數(shù),可知一個成遞增的等差數(shù)列另一個成遞減的等差數(shù)列,故N(n,24)=11n2-10n,∴N(10,24)=1000

  [相關知識點]歸納推理,等差數(shù)列


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,若an=145,則n=
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn}.可以推測:b2012是數(shù)列{an}中的第
5030
5030
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖2中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,得數(shù)列{an},則an-an-1=
3n-2(n≥2)
3n-2(n≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(Ⅰ)b2012是數(shù)列{an}中的第
5030
5030
項;
(Ⅱ)b2k-1=
5k(5k-1)
2
5k(5k-1)
2
.(用k表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過1,3,6,10,…,可以用如圖的三角形點陣表示,那么第10個點陣表示的數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案