13.參數(shù)方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ為參數(shù))表示的曲線是( 。
A.直線B.C.線段D.射線

分析 將參數(shù)方程化為普通方程,即可得出結(jié)論.

解答 解:由題意,x+y=1且0≤x≤1,
∴參數(shù)方程$\left\{{\begin{array}{l}{x={{cos}^2}θ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ為參數(shù))表示的曲線是線段.
故選:C.

點評 本題考查曲線與方程,考查學(xué)生的計算能力,將參數(shù)方程化為普通方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知y=f(x)為R上的連續(xù)可導(dǎo)的奇函數(shù),當(dāng)x>0時f′(x)+$\frac{f(x)}{x}$<0,則g(x)=f(x)+$\frac{2}{x}$的零點個數(shù)為( 。
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正方形ABCD的邊長為2,邊AB,CD分別為圓柱上下底面的直徑,若一螞蟻從點A沿圓柱的表面爬到點C,則該螞蟻所走的最短路程為$\sqrt{{π^2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.正三角形ABC的邊長為1,設(shè)$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{BC}$=$\vec b$,$\overrightarrow{AC}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec b$•$\vec c$+$\vec c$•$\vec a$的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足:an=n•3n(n∈N*),則此數(shù)列前n項和為Sn=$\frac{2n-1}{4}$•3n+1+$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}滿足an=$\frac{{a}_{n-1}-1}{{a}_{n-1}}$(n>1)且a1=-$\frac{1}{4}$,則a2015=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有f[f(x)-$\frac{1}{x}$]=2,則f($\frac{1}{6}$)的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)化簡  $\frac{sin3α}{sinα}$-$\frac{cos3α}{cosα}$;
(2)已知tan$\frac{α}{2}$=2,求$\frac{6sinα+cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校為調(diào)查來自南方和北方的同齡大學(xué)生的身高差異,從2014級的年齡在17~19歲之間的大學(xué)生中隨機抽取了自南方和北方的大學(xué)生各10名,測量他們的身高,量出的身高如下(單位:cm)
南方:158,170,166,169,180,175,171,176,162,163
北方:183,173,169,163,179,171,157,175,178,166
(1)根據(jù)抽測結(jié)果,完成莖葉圖,并根據(jù)你填寫的莖葉圖,對來自南方和北方的大學(xué)生的身高作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10名南方大學(xué)生的平均身高為$\overline{x}$,將10名同學(xué)的身高依次輸入按程序框圖進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.

查看答案和解析>>

同步練習(xí)冊答案