9.離心率為2的雙曲線M:x2-$\frac{{y}^{2}}{m}$=1(m>0)上一點(diǎn)P到左、右焦點(diǎn)F1,F(xiàn)2的距離之和為10,則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于( 。
A.12B.14C.16D.18

分析 由題意,a=1,c=2,m=$\sqrt{3}$.設(shè)P到左、右焦點(diǎn)F1,F(xiàn)2的距離分別為s,t,則|s-t|=2,|s+t|=10,可得st=24,s2+t2=52,利用余弦定理求出cos<$\overrightarrow{P{F}_{1}}$,$\overrightarrow{P{F}_{2}}$>$\frac{3}{4}$,即可求出$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$.

解答 解:由題意,a=1,c=2,m=3.
設(shè)P到左、右焦點(diǎn)F1,F(xiàn)2的距離分別為s,t,則|s-t|=2,|s+t|=10,
∴st=24,s2+t2=52,
∴cos<$\overrightarrow{P{F}_{1}}$,$\overrightarrow{P{F}_{2}}$>=$\frac{52-16}{2×24}$=$\frac{3}{4}$,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=24×$\frac{3}{4}$=18.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的性質(zhì),考查余弦定理,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC在平面α內(nèi),直線CD⊥平面α,P是平面α內(nèi)的一個(gè)動(dòng)點(diǎn),設(shè)P到直線AB的距離為d1,P到直線CD的距離為d2,若d1=d2,則動(dòng)點(diǎn)P的軌跡是( 。
A.B.拋物線C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.過點(diǎn)M(-2,0)作直線l與雙曲線x2-y2=1交于A,B兩點(diǎn),以O(shè)A,OB為鄰邊作平行四邊形OAPB,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知奇函數(shù)f(x)在區(qū)間(-∞,0)上是增函數(shù),且f(-2)=-1,f(1)=0,當(dāng)x1>0,x2>0有f(x1x2)=f(x1)+f(x2),求不等式log2|f(x)+1|<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)P為拋物線C:x2=2py(p>0)上任意一點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M(0,m),若|PM|≥|OM|恒成立,則實(shí)數(shù)m的取值范圍為(  )
A.(-∞,$\frac{p}{4}$]B.(-∞,$\frac{p}{2}$]C.(-∞,p]D.(-∞,2p]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,已知cosB+(cosA-$\sqrt{3}$sinA)cosC=0.
(1)求C的大;
(2)若c2=2b2-a2,且S△ABC=2$\sqrt{3}$,求a、b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:方程$\frac{x^2}{2}+\frac{y^2}{m}$=1表示焦點(diǎn)在x軸上的橢圓,命題q:對(duì)任意實(shí)數(shù)x不等式x2+2mx+2m+3>0恒成立.
(Ⅰ)若“¬q”是真命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知⊙P:x2+y2+x-6y+m=0與直線l:x+2y-3=0
(1)若m=0,判斷直線l與⊙P位置關(guān)系;
(2)若直線l與⊙P相交于A,B兩點(diǎn),且OA⊥OB(O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不共線向量$\overrightarrow{OA}$,$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=2|$\overrightarrow{OB}$|,存在實(shí)數(shù)λ使得$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,且$\overrightarrow{OC}$•$\overrightarrow{OA}$=2$\overrightarrow{OB}$•$\overrightarrow{OC}$,則$\frac{|\overrightarrow{OC}|}{|\overrightarrow{OA}|}$的取值范圍為( 。
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{4}{3}$)C.(0,$\frac{4}{3}$)D.($\frac{4}{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案